Natural Language Processing
CSCI 4152/6509 — Lecture 3
Finite Automata Review

Instructors: Vlado Keselj
Time and date: 16:05 — 17:25, 12-Sep-2023
Location: Rowe 1011

CSCl 4152/6509, Vlado Keselj

1/14

Previous Lecture

e Why is NLP hard?

» ambiguous, vague, universal

o Ambiguities at different levels of NLP
e About course project

» Deliverables: PO, P1, P, R

» Project report structure

» Choosing project topic

CSCl 4152/6509, Vlado Keselj

2/14

Part Il: Stream-based Text Processing

e Considering text as a stream of characters, words,
and lines of text

Review of Finite Automata and Regular Expressions
Review of Unix-style text processing

Introduction to Perl

Morphology fundamentals

N-grams

Reading: Chapter 2, Jurafsky and Martin

CSCl 4152/6509, Vlado Keselj Lecture 3 3/14

Finite-State Automata

Regular Expressions and Regular Languages
Regular Languages can be described using

» Regular Expressions

» Regular Grammars
» Finite-State Automata (DFA and NFA)

DFA = Deterministic Finite Automaton
@ NFA = Non-deterministic Finite Automaton

also referred to as Finite-State Machines

CSCl 4152/6509, Vlado Keselj Lecture 3 4 /14

Deterministic Finite Automaton

e Formally defined as a 5-tuple: (Q, X, 9, qo, F)
» () is a set of states
> Y is an input alphabet
» 0 : () x X — (@ is a transition function
» o € @ is the start state
» ' C (@ is a set of final or accepting states

@ Graph representation is frequently used

@ Consider finite automata for sets of strings:
baaa...a! ha-ha-...-ha
up-up-down-up-down-up-up-...down

CSCl 4152/6509, Vlado Keselj Lecture 3 5/ 14

DFA for language baa. . .a! using a graph

o & = E DA
CSCl 4152/6509, Vlado Keselj Lecture 3

Consider DFA for: ha-ha-...-ha

o & = E DA
CSCl 4152/6509, Vlado Keselj Lecture 3

Representing DFA

@ Formally, as sets and functions (mappings)

@ As a transition table

@ As a graph

@ Consider the DFA for the language: baaa...a!

CSCl 4152/6509, Vlado Keselj Lecture 3 8 /14

DFA for language baa. ..a! using a table

o & = E DA
CSCl 4152/6509, Vlado Keselj Lecture 3

Non-deterministic Finite Automaton

e Formally: (@, 2,4, qo, F)

@ However, the transition function is different:
d:Q x 3. — P(Q)
where . = X U {¢e}, and P(Q) is the set of all
subsets of () (powerset)

@ A string is accepted if there is at least one path
leading to an accepting state

@ Consider: /.*ing/ or /jan|jun|jul/

CSCl 4152/6509, Vlado Keselj ecture 10 / 14

NFA for /.*ing/ or /jan| jun|jul/

CSCl 4152/6509, Vlado Keselj Lecture 3

Another NFA and DFA Example

@ Write a DFA that accepts any sequence over
alphabet > = {a, b, ..., z} that ends with ‘eses’,
like ‘theses’ or ‘parentheses’.

@ Write an NFA that accepts the same language.

CSCl 4152/6509, Vlado Keselj Lecture 3 12 / 14

Implementing NFAs

@ DFA — easy to implement, NFA — not
straightforward

@ Two approaches for NFA: backtracking and
translation to DFA

@ Using backtracking — usually inefficient solution
@ Translating into a DFA

» Sets of reachable NFA states become states of
new DFA

CSCl 4152/6509, Vlado Keselj Lecture 3 13 / 14

NFA to DFA Translation

Start with NFA and create new equivalent DFA
@ DFA states are sets of NFA states

o If gy is the start NFA state, then the start DFA state
is Closure(q)

@ Closure(A) of a set of NFA states A is a set A with
all states reachable via e-transitions from A

o Fill DFA transition table by keeping track of all
states reachable after reading next input character

@ Final states in DFA are all sets that contain at least
one final state from NFA

CSCl 4152/6509, Vlado Keselj Lecture 3 14 / 14

