Natural Language Processing

CSCI 4152/6509 — Lecture 21

Neural Network Models for NLP; Parsing
NLP

Instructors: Vlado Keselj

Time and date: 16:05 — 17:25, 21-Nov-2023
Location: Rowe 1011

CSCl 4152/6509, Vlado Keselj 1/33



Previous Lecture

Neural networks and deep learning
Applications

Some main developments

Large deep learning models

Exponential growth in size of LLMs

Biological neuron, perceptron, feed-forward network

Activation functions, softmax function
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Neural Language Model
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(Jurafsky and Martin)

The model has limited history, similarly to n-gram model
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Recurrent Neural Networks (RNN)

@ Simple recurrent neural network presented as a
feedforward network (Jurafsky and Martin, Figure
9.3)

@ RNN is trained as a Language model by providing
the next word as output
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RNN Unrolled in Time

@ RNN unrolled in time; more clear view of training
(Jurafsky and Martin, Figure 9.5)
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Stacked RNN

@ Stacked RNN: Output from lower level is input to
higher level; top level is final output (Jurafsky and
Martin, Flgure 9.10)

[j—ﬁ]—[:— RNN 3

| 1 i
RNN 2ﬂ
4[3

| |
m m RNN 1
| |

) O

D () )
’D%

X1 X2 X3

CSCl 4152/6509, Vlado Keselj Lecture 21

6/33



Bidirectional RNN

@ Bidirectional RNN; trained forward and backward
with concatenated output (Jurafsky and Martin,

Figure 9.11)
@ Output can be used for sequence labeling, for
example
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LSTM — Long Short-Term Memory

@ LSTM: z; is input, h;_1 is previous hidden state, ¢;_;
is previous long-term context, h; and ¢; is output
(Jurafsky and Martin, Figure 9.13)
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LSTM Cell

@ Another view of LSTM cell (source Wikipedia)
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Transformers

@ Transformers map a sequence of input vectors to a
sequence of output vectors of the same length
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Self-Attention Layer
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Self-Attention Training

score(x;, T;) = x; - Xj
o;j = softmax(score(x;, x;)) Vj <i

Yi = E QT

J<i
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Transformer Block
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Multihead Attention Layer
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Encoding Word Positions in Transformers

Transformer
Blocks
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IMNTERI] A simple way to model position: simply adding an embedding representation
of the absolute position to the input word embedding.

from: Jurafsky and Martin, 3rd ed. draft
YES



Training Transformer as a Language Model
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Figure 9.21

from: Jurafsky and Martin, 3rd ed. draft
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Text Completion with Transformers

Completion Text

Sample from Softmax
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from: Jurafsky and Martin, 3rd ed. draft
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Parsing Natural Languages

Must deal with possible ambiguities

Decide whether to make a phrase structure or
dependency parser

@ When parsing NLP, there are generally two
approaches:
@ Backtracking to find all parse trees
© Chart parsing

Prolog provides a very expressive way to NL parsing

FOPL is also used to represent semantics
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Parsing with Prolog

@ We will go over a brief Prolog review
» more details are provided in the lab
@ Implicative normal form:

PLAD2N ... ANDp=qnVq@V...VQqn

@ If m <1, then the clause is called a Horn clause.

@ If resolution is applied to two Horn clauses, the result
Is again a Horn clause.

@ Inference with Horn clauses is relatively efficient
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Rules

A Horn clause with m = 1 is called a rule:

PLAD2N ... APp = q1

It is expressed in Prolog as: q1 :- pl, p2, ..., p_n.
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Facts

A clause with m = 0 is called a fact:
PLADP2 A ... Ap, =T

is expressed in Prolog as: pl, p2, ..., p_n.
or :- pl, p2, ..., p_n.
and it is called a fact.
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Rabbit and Franklin Example

The ‘rabbit and franklin’ example in Prolog:
hare(rabbit) .

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

Save the program in a file, load the file.

After loading the file, on Prolog prompt, type:
faster(rabbit,franklin).

Try: faster(X,franklin). and faster(X,Y).
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Rabbit and Franklin Example

hare(rabbit).
turtle(franklin).
faster(X,Y) :- hare(X), turtle(Y).

?- faster(rabbit,franklin).
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Rabbit and Franklin Example

hare(rabbit).
turtle(franklin).
faster(X,Y) :- hare(X), turtle(Y).

?- faster(X,franklin).
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Rabbit and Franklin Example

hare(rabbit).
turtle(franklin).
faster(X,Y) :- hare(X), turtle(Y).

?- faster(X,Y).
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Unification and Backtracking

@ Two important features of Prolog: unification and
backtracking

@ Prolog expressions are generally mathematical
symbolic expressions, called terms

@ Unification is an operation of making two terms
equal by substituting variables with some terms

e Backtracking: Prolog uses backtracking to satisfy
given goal; i.e., to prove given term expression, by
systematically trying different rules and facts, which
are given in the program
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Example in Unification and Backtracking

@ What happens after we type:
?- faster(rabbit,franklin).

@ Prolog will search for a ‘matching’ fact or head of a
rule:
faster(rabbit,franklin) and
faster(X,Y) :— ...

@ 'Matching’ here means unification

o After unifying faster (rabbit,franklin) and
faster(X,Y) with substitution X<—rabbit and
Y<franklin, the rule becomes:
faster(rabbit,franklin) :-

hare(rabbit), turtle(franklin).
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Example (continued)

@ Prolog interpreter will now try to satisfy predicates at
the right hand side: hare(rabbit) and
turtle(franklin) and it will easily succeed based
on the same facts

o If it does not succeed, it can generally try other
options through backtracking
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Variables in Prolog

@ Variable names start with uppercase letter or
underscore (‘")

@ _ is a special, anonymous variable

o Examples: 7- faster(rabbit,franklin).
Yes ;

?7- faster(rabbit,X).

X = franklin ;
?- hare(X).
X = rabbit ;
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Lists (Arrays), Structures.

Lists are implemented as linked lists. Structures (records)
are expressed as terms. Examples:

In program: person(john,public,’123-456").
Interactively: ?- person(john,X,Y).

[] is an empty list.

A list is created as a nested term, usually a special
function *." (dot):

7- is_list(.(a, .(b, .(c, [ID))).
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List Notation

(.(a, .(b, .(c, [1))) is the same as [a,b,c]
This is also equivalent to:

Lal [b | [cl [011]

or

[a, bl [ c]]

A frequent Prolog expression is: [H|T]

where H is head of the list, and T is the tail, which is

another list.
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Example: Calculating Factorial

factorial(0,1).

factorial(N,F) :- N>0, M is N-1, factorial(M,FM),
F is FMxN.

After saving in factorial.prolog and loading to Prolog:

?7- [’factorial.prolog’].

% factorial.prolog compiled 0.00 sec, 1,000 bytes

Yes
?7- factorial(6,X).

X =720 ;
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Example: List Membership

Example (testing membership of a list):

member (X, [X[|_]).
member (X, [_|L]) :- member(X,L).
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