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Abstract

We present a detailed description of the modu-
lar Head-driven Phrase Structure Grammar (HPSG).
Although the notion of modularity is known in the
area of programming languages, and it is described
for context-free grammars (CFG), this is the first at-
tempt of defining modularity for HPSGs.

We describe and formally define modularity for
an HPSG-type grammar, and we illustrate its appli-
cation on an example.

1 Introduction

HPSG is currently one of the most important for-
malisms used in computational linguistics. This
unification-based formalism is successfully used
in theoretical linguistics to explain many natural-
language (NL) phenomena, and it is also used in
practical applications.

Although it does scale well up to a certain size
of the knowledge base, it appears difficult to achieve
a “real-world” coverage with the available meth-
ods. HPSG lexicalism supports encapsulation of
some fine-grained knowledge at the word level. We
propose HPSG modules as a way of encapsulating
coarse-grained knowledge at the level of domains
(semantic domains, application domains, or similar).

There are two major advantages of using HPSG
modules:

First, HPSG modularity makes NL engineer-
ing easier in the way object-oriented programming
(OOP) makes computer programming easier. Build-
ing large and complex NL systems is easier if the
problem is divided into well-defined parts, which
can be separately developed, tested, and maintained.

And second, HPSG modularity provides a frame-
work for independent development of NL modules
in different domains, and their unifying use over
the Internet. This is a promising application in the
context of current research activity in the area of
e-commerce and XML.

2 Related Work

[8] is a very readable introduction into the area of
unification-based grammars (UBG). The HPSG for-
malism is described in [1], [6], and [7]. A formal
definition suitable for our current experiments in
question-answering is given in [2].

The notion of composition from the area of pro-
gramming languages is applied to linguistic for-
malisms in [10]. [11] presents a compositional se-
mantics for CFGs, and defines modules for CFGs.
Our definition of modules for HPSGs follows the
same motivation.

With respect to the logic of typed feature struc-
tures, [5] discusses an algebraic method for extract-
ing sub-signatures from larger signatures. This work
is related to the operation of module extraction from
a large grammar.

[4] uses machine learning approaches to auto-
matically extract a corpus-oriented subgrammar. If a
corpus is from a specific domain, then the extracted
subgrammar will be tuned towards this domain. The
HPSG formalism is used, as well as the stochastic
lexicalized tree grammars.

[12] present a practical approach to modularity
of UBGs. The approach is implemented in a system,
which is used in several machine-translation appli-
cations. The modules are separate executable units,
connected within the system in the style of the Unix
pipe command. This technique is simple and elegant,
but it is also a limited solution. The limitations are
mandatory serialization of modules and module iso-
lation.

3 HPSG

We define an HPSG to be a standard cyclic UBG
with addition of types, which form a multi-inheritance
hierarchy. Well-typedness and appropriateness are
not used. The model definition can be found in [2].
In this section, we define HPSG principles, which
play an important role in the HPSG modularity.
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The definition of an HPSG principle is equivalent
to the definition of an HPSG rule ([2]):

Definition 1 (HPSG principle). An HPSG princi-
ple is either phrasal (i.e., non-lexical) HPSG princi-
ple or lexical HPSG principle. A phrasal HPSG prin-
ciple is a tuple(X,Y1, . . . , Yn) ∈ Fn+1 (n ≥ 1),
denoted as:

X → Y1 . . . Yn,

whereX, Y1,. . . ,Yn are AVMs. A lexical HPSG prin-
ciple is a pair(A,a) ∈ F × Atom, denoted as:

A→ a,

whereA is an AVM, anda is an atom.

Unlike an HPSG rule, an HPSG principle is
not used directly in a derivation. The principles are
meant to represent relations that are part of HPSG
rules. To illustrate this, consider the rule:[

np
HDTR: 1

]
→ [the] 1 [n] (1)

This rule is directly applied during generation or
parsing. The head principle, which states that the
head component of the head daughter is unified with
the head component of the mother, can be specified
as follows:[

HEAD: 1

HDTR: [HEAD: 1 ]

]
→ [ ] [ ]

This principle can be applied to rule (1) by unifying
it with that rule, and by obtaining the new rule:[

np
HDTR: 1

HEAD: 2

]
→ [the] 1

[
n
HEAD: 2

]
If we do not want a principle to be applied to a par-
ticular rule, we simply prevent unification between
them. For example, the following rule could not be
unified with the head principle above:[

sen
HEAD: -

]
→ [s1] [s1]

The principles are important for HPSG modules,
since principles from one module are applied to rules
of another module. Application of a set of principles
to a set of rules is defined in the following way:

Definition 2 (Principles application). If P is a fi-
nite set of principles, andR is a finite set of rules in

the same grammar, we defineP ⊗R to be the follow-
ing set of rules:

P ⊗R = {p t r : p ∈ P, r ∈ R,
andp t r exists}

∪ {r : r ∈ R, (∀p ∈ P )
p t r does not exist}.

4 Modularity

The notion of modularity that we present here is
partly inspired by the OOP paradigm. In particular,
an access control similar to the public/protected/pri-
vate access in OOP is applied. An HPSG module
incorporates an HPSG, and we also want to be able
to merge two modules into a new module.

An HPSG is a tuple(Atom, Feat, Var, Type, Init,
Rule), whereAtom is an enumerable set of atoms,
Feat is a finite set of features (attributes),Var is an
enumerable set of variables,Type is a finite, multi-
inheritance type hierarchy,Init is a finite set of initial
AVMs, and Rule is a finite set of rules. A finite set
of principlesPrin is also a part of an HPSG module.
To define a merge operation requires that we define
how these grammar components combine to form the
resulting grammar. Hence, given two modules

M1 = (Atom1, Feat1,Var1, Type1, Init1,

Rule1,Prin1), and

M2 = (Atom2, Feat2,Var2, Type2, Init2,

Rule2,Prin2),

we describe how to obtain the result of their merge:

M = M1 ∪M2 = (Atom, Feat,Var,

Type, Init,Rule,Prin).

Atoms. Typical atoms are words of a natural lan-
guage. The set of atoms is usually the set of all words
over a finite alphabet. We assume that both mod-
ules are defined over the same set of atoms, i.e., that
Atom1 = Atom2, and thatAtom = Atom1 = Atom2.
In order words, all atoms arepublic.

Features. The features are divided into two sets:
public and private features, i.e.,Feat1 = Featpub

1 ∪
Featpriv

1 andFeat2 = Featpub
2 ∪ Featpriv

2 . Two public
features from the modules that have the same name
represent the same feature in the resulting module. If
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at least one of them is private, then they are not the
same features.

For example, if the featureA is a public feature
of the moduleM1, and it is a public feature of the
moduleM2, then

[A:1](M1) t [A:1](M2) = [A:1]

where the superscripts(M1) and (M2) denote that
the first AVM is from the moduleM1 and the second
from moduleM2.

However, if the featureA is a private feature of
M1 and a public feature ofM2, then we have:

[A:1](M1) t [A:1](M2) =
[

A(M1):1
A: 1

]
Similarly, if the featureA is a private feature of

M1 and a private feature ofM2, then:

[A:1](M1) t [A:1](M2) =
[

A(M1):1
A(M2):1

]
The resulting sets of features are created in the

following way:

Featpub = Featpub
1 ∪ Featpub

2

Featpriv = {(f,M1) : f ∈ Featpriv
1 } ∪

{(f,M2) : f ∈ Featpriv
2 }, and

Feat = Featpub∪ Featpriv.

We assume that no public features have the form
(f,M ′), whereM ′ is an HPSG module.

Variables. We assume thatVar1 = Var2 = Var.

Type hierarchy.Similarly to features, the types are
divided into public and private types. Two public
types with the same name are merged into one type,
while two private types from different modules are
always different after a merge.

Unlike features, the types do not form just a set,
but a type hierarchy. A type hierarchy is a partial or-
derType = (T,v), with the minimal element⊥, rep-
resenting the most general type, and such that for any
two typest1, t2 ∈ T there is at most one least upper
bound for both of them, i.e.,

(∀t3, t4 ∈ T) (t1, t2 v t3) ∧ (t1, t2 v t4)
⇒ (t3 v t4) ∨ (t4 v t3). (2)

If two types t1 and t2 do not have the least upper
bound, then we say that they cannot be unified; oth-
erwise, we say that they can be unified and the result

of their unification is the least upper bound, denoted
ast1 t t2.

For each module, the types are divided into pri-
vate and public types, i.e.,T1 = Tpriv

1 ∪ Tpub
1 , and

T2 = Tpriv
2 ∪Tpub

2 . The setsT1 andT2 are the type sets
of the modulesM1 andM2, i.e., Type1 = (T1,v1)
andType2 = (T2,v2). The resulting type set is ob-
tained in the same way as the feature set:

Tpub = Tpub
1 ∪ Tpub

2

Tpriv = {(t,M1) : t ∈ Tpriv
1 } ∪

{(t,M2) : t ∈ Tpriv
2 }, and

T = Tpub∪ Tpriv.

We assume that no public types have the form
(t,M ′), whereM ′ is an HPSG module. The most
general type is always public, so the resulting hi-
erarchy will also have the most general type. The
resulting partial order, i.e., the resulting type sub-
sumption, is the result of the transitive closure of the
union of the relationsv1 andv2, i.e.:

v= (v1 ∪ v2)+

The resulting relation ‘v’ is not necessarily a partial
order, even less it necessarily satisfies condition (2).
For this reason, two HPSG modules can be merged
only if the resulting type hierarchyType = (T,v)
is well-defined, i.e., it is a partial order, and condi-
tion (2) is satisfied.

Initial AVMs. The set of initial AVMsInit is the union
of Init1 andInit2: Init = Init1 ∪ Init2.

Rules. The rules are divided into private and pub-
lic rules: Rule1 = Rulepub

1 ∪ Rulepriv
1 and Rule2 =

Rulepub
2 ∪ Rulepriv

2 . The resulting set of rules is ob-
tained in the following way:

Rulepub = Rulepub
1 ∪ Rulepub

2

Rulepriv = Rulepriv
1 ∪ Rulepriv

2

Rule = Rulepub∪ Rulepriv

Principles. All principles are public, i.e.:

Prin = Prin1 ∪ Prin2

The previous discussion can be summarized into
the following two definitions, in which we finally
precisely define the notion of HPSG module and
module merge operation.
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Definition 3 (HPSG module).An HPSG module is
a tuple

(Atom, Featpub, Featpriv,Var, Tpub, Tpriv,
v, Init,Rulepub,Rulepriv,Prin),

(3)

such thatFeatpub ∩ Featpriv = ∅, Tpub ∩ Tpriv = ∅,
no elements fromFeatpub have form(f,M ′) where
M ′ is an HPSG module, no elements fromTpub have
form (t,M ′), and the tuple

(Atom, Featpub∪ Featpriv,Var,
(Tpub∪ Tpriv,v), Init,

(Prin⊗ Rule) ∪ Rulepriv)
(4)

is an HPSG grammar.
We say that grammar (4) is defined by mod-

ule (3).

Definition 4 (Module merge). The merge of two
HPSG modulesM1 andM2, where:

M1 = (Atom1, Featpub
1 , Featpriv

1 ,Var1,

Tpub
1 , Tpriv

1 ,v1, Init1,

Rulepub
1 ,Rulepriv

1 ,Prin1)

M2 = (Atom2, Featpub
2 , Featpriv

2 ,Var2,

Tpub
2 , Tpriv

2 ,v2, Init2,

Rulepub
2 ,Rulepriv

2 ,Prin2)

is the HPSG moduleM = M1 ∪M2, where

M = (Atom, Featpub, Featpriv,Var,
Tpub, Tpriv,v, Init,

Rulepub,Rulepriv,Prin)

satisfying the following conditions:

1. Atom = Atom1 = Atom2

2. Featpub = Featpub
1 ∪ Featpub

2 and

Featpriv = {(f,M1) : f ∈ Featpriv
1 }∪

{(f,M2) : f ∈ Featpriv
2 }

3. Var1 = Var2 = Var.
4. Tpub = Tpub

1 ∪ Tpub
2 and

Tpriv = {(t,M1) : t ∈ Tpriv
1 }∪

{(t,M2) : t ∈ Tpriv
2 }

5. (Tpub∪ Tpriv,v) is a type hierarchy,
6. Init = Init1 ∪ Init2
7. Rulepub = Rulepub

1 ∪ Rulepub
2 and Rulepriv =

Rulepriv
1 ∪ Rulepriv

2 , and
8. Prin = Prin1 ∪ Prin2

5 Example

We use a toy example to show how HPSG modules
are used in an application to the problem of ques-
tion answering. The details about using HPSG in the
problem of question answering can be found in [3].
Here, we give a short description of the method. The
problem of question answering is defined in the fol-
lowing way:

Given a collection of natural-language doc-
uments, find an answer to given NL query
that is a short substring of one of the docu-
ments, and it is found in a relevant context.

This substring to be returned is called ananswer
string. To find an answer string, we first parse the
question and obtain its semantic representation in
form of an AVM. After finding relevant passages,
each passage is parsed using a chart parsing algo-
rithm. Parsing fills the chart with edges: one edge
per one successfully recognized word, phrase, or
sentence. Each edge contains an AVM, and these
AVMs are matched to the question AVM. The best
matching AVM determines the phrase that is the
answer string.

The NL component is defined by the five HPSG
modules:

1. chart module,
2. general syntactic module,
3. general semantic module,
4. question syntactic module, and
5. question semantic module.

We use an example question from TREC-8 [9]:

When was London’s Docklands Light
Railway constructed?

(5)

A classical IR system based on a keyword ap-
proach could not find an answer to this question.
However it did retrieve a relevant passage. A correct
answer string was:

. . . the opening of the railway in 1987 . . . (6)

Chart moduleis related to chart parsing, and it is not
concerned with linguistic knowledge. The span of
each edge in the chart is determined by two features
FROM and TO, which have integer values. These
two features are private, which is an important fact
for the operation of matching the query AVM to the
passage AVMs. Since there are two different charts
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for queries and passages, the values of the features
FROM andTO cannot be compared, i.e., unified. It
is achieved by having both features private, and by
creating two different instances of the chart module.

The chart module includes the following princi-
ples:[

FROM: 1

TO: 2

]
→
[

FROM: 1

TO: 2

]
[

FROM: 1

TO: 2

]
→
[

FROM: 1

TO: 3

][
FROM: 3

TO: 2

]
[

FROM: 1

TO: 2

]
→
[

FROM: 1

TO: 3

][
FROM: 3

TO: 4

][
FROM: 4

TO: 2

]
In our grammar, there are no rules with more

than three daughters, so the principles above cover
all rules. The principles introduce the natural rela-
tions of spans between daughters and a mother.

General syntactic moduledescribes syntactic prop-
erties of words and phrases. It consists of the follow-
ing type hierarchy:

np

name year

pp np1 n verb_ed the prep

of in

and the following rules:[
name
NUM:sg

]
→ London’s Docklands Light Railway

[verb ed]→ constructed [the]→ the
[n]→ opening [of ]→ of
[n]→ railway [in]→ in

[year]→ 1987

[pp]→ [prep][np] [np1]→ [n]
[np1]→ [np1][pp] [np]→ [the][np1]

All features and all types are public, and there
are no principles. This module recognizes words
and some phrases of given query (5) and string (6).
Due to prepositional phrase attachment ambiguity, it
produces two parses for the passage. The phrase ‘in
1987’ can be attached to the word ‘railway’ as well
as to the word ‘opening’.

General semantic moduledescribes semantics of
words and phrases. We use this general module to
disambiguate prepositional phrase attachment am-
biguity using the feature ‘EVENT’. Namely, if we
assume that ‘opening’ is an event, that ‘railway’
is not an event, and that a prepositional phrase of

the form ‘in year’ can only modify events, then the
previous ambiguity is resolved.

All types are public and the type hierarchy is:

innnp1ppyear

The module does not contain any rules, and the set
of principles is given below:[

pp
SEM:OBJ: 1

]
→ [of ] 1 [np][

pp
SEM:DATE: 1

]
→ [prep]

[
np
SEM:DATE: 1

]
[
np1
SEM:EVENT: 1

]
→
[
n
SEM:EVENT: 1

]
[
np1
SEM:EVENT: -

]
→
[
n
SEM:EVENT: -

]
[
pp
SEM:DATE: -

]
[

np1

SEM:
[

EVENT: 1

DATE: 2

]]→ [n
SEM:EVENT: 1 [ ]

]
[
pp
SEM:DATE: 2

]
[SEM:EVENT:DESC:open]→ opening

[SEM:EVENT: - ]→ railway

[SEM:DATE:1987]→ 1987

[SEM:EVENT:DESC:construct]→ constructed

Now, the prepositional phrase attachment is resolved
since the word ‘railway’ is not an event, and thus
it will not allow a modifier with a feature value of
‘DATE’ set, i.e., different than ‘- ’.

Question syntactic moduledefines higher-level
question topology. It has one feature ‘NUM’, all
its types are public, and the type hierarchy is:

when_was question_mark question np verb_ed

All rules are public and the following is the set of
rules:

[whenwas]→When was

[questionmark]→ ?

[question]→ [whenwas]
[
np
NUM:sg

]
[verb ed][questionmark]
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Using this module, we can completely parse the
question.

Question semantic moduledefines specific question
semantics. We define question semantics in an SQL-
like style using ‘SELECT’ and ‘WHERE’ attributes.
We use the following set of public attributes:

{SEM,SELECT,WHERE,DATE,OBJ}

All types are public and the following is the type hi-
erarchy:

verb_ednpquestion_markwhen_was

The module does not contain any rules, and it con-
tains one principle:[

SEM:
[

SELECT: 1

WHERE: 2 [DATE: 1 ]

]]
→

[whenwas] 3 [np][
verb ed
SEM: 2 [OBJ: 3 ]

]
[questionmark]

Module application.We merge all four modules and
apply the resulting grammar to query (5). One parse
tree is obtained, and the semantic part of the result is
the following:

question

SEM:


SELECT: 1

WHERE:

EVENT: [DESC:construct]
OBJ:

[
np
NUM:sg

]
DATE: 1





The semantic representation of string (6) is:np

SEM:

[
EVENT: [DESC:open]
DATE: 1987
OBJ: [np]

]
Now, since the word ‘railway’ appears in the

span of the AVM associated with the feature ‘OBJ’,
we can match the question AVM to the answer AVM.

6 Conclusion and Future Work

We present a first attempt of defining modularity for
HPSGs. The notion of an HPSG module is discussed,
and precisely defined. Using a small example from a
real-world application, we show how it can be used
to handle complexity of NLP.

The future work includes:

– defining operation of module extraction from a
large grammar, give a domain specification, and

– defining modules for stochastic HPSGs.
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