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Abstract

Background: We propose an unsupervised method to automatically extract domain-

specific prefixes and suffixes from biological corpora based on the use of PATRICIA

tree. The method is evaluated by integrating the extracted affixes into an existing

learning-based biological term annotation system.

Results: The system based on our method achieves comparable experimental results

to the original system in locating biological terms and exact term matching annota-

tion. However, our method improves the system efficiency by significantly reducing the

feature set size. Additionally, the method achieves a better performance with a small

training data set.

Conclusions: Since the affix extraction process is unsupervised, it is assumed that the

method can be generalized to extract domain-specific affixes from other domains, thus

assisting in domain-specific concept recognition.
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Introduction

Biological term annotation is a preparatory step in information retrieval in biological science. A

biological term is generally defined as any technical term related to the biological domain. Con-

sidering term structure, there are two types of biological terms: single word terms and multi-

word terms. Annotating important terms in unstructured biological text such as molecules,

genes and proteins enables the discovery of patterns and semantic relations in the text. Many

systems [1–3] have been proposed to annotate biological terms based on different methodolo-

gies in which determining term boundaries is usually the first task. It has been demonstrated [4],

however, that accurately locating term boundaries is difficult. This is so because of the ambi-

guity of terms, and the peculiarity of the language used in biological literature. Consequently,

different terms that are possibly semantically unrelated could be generated due to erroneously

located boundaries.

Jiampojamarn et al. [5] proposed an automatic biological term annotation system (ABTA)

which applies supervised learning methods to annotate biological terms in the biological lit-

erature. Given unstructured texts in biological research, the annotation system first locates

biological terms based on five word position classes, “Start”, “Middle”, “End”, “Single” and

“Non-relevant”. Therefore, multi-word biological terms should be in a consistent sequence

of classes “Start (Middle)* End” while single word terms will be indicated by the class “Sin-

gle”. The system then associates each located term with biological concept markers indicating

whether the term is a “protein”, “DNA” or “RNA” instance name. Word n-grams [6] are used

to define each input sentence into classification instances. For each element in an n-gram, the

system extracts feature attributes as input for creating the classification model. The extracted

feature attributes include word feature patterns (e.g., Greek letters, uppercase letters, digits and

other symbols), part-of-speech (POS) tag information, prefix and suffix characters. Without

using other specific domain resources, the system achieves comparable results to some other

state-of-the-art systems [3, 7, 8] which resort to external knowledge, such as protein dictionar-

ies. It has been demonstrated [5] that the part-of-speech tag information is the most effective

attribute in aiding the system to annotate biological terms because most biological terms are

partial noun phrases and the POS tag information reduces the confusion over other tags such

as determiner, verb, and preposition. However, in ABTA, the affix characters extracted from

words did not improve the overall system performance as significantly as the part-of-speech tag

information.

In fact, ABTA system learns the affix feature by recording only the first and the last n

characters (e.g., n = 3) of each word in classification instances, and the authors claimed that the

n characters could provide enough affix information for the term annotation task. However, it

is often observed that most biological terms tend to employ longer affixes which carry specific

semantic meanings about the terms. Instead of using a certain number of characters to provide

affix information, it is more likely that a specific list of typically used prefixes and suffixes of

biological words would provide more accurate information to classifying some biological terms

and boundaries. We therefore hypothesize that a more flexible affix definition will improve the
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performance of the task of biological term annotation.

Inspired by the work of Jiampojamarn et al. [5], we propose a method to automatically

extract domain-specific prefixes and suffixes from biological corpora. We evaluate the effec-

tiveness of the extracted affixes by integrating them into the parametrization of an existing

biological term annotation system, ABTA [5], to evaluate the impact on performance of term

annotation. The proposed method is completely unsupervised. For this reason, we assume

that our method can be generalized for extracting domain-specific affixes from many domains.

Without prior knowledge about a certain domain, the extracted affixes could help to recognize

specific domain terms, understand domain concepts, and further facilitate semantic processing

of the text in the domain.

The rest of the paper is organized as follows: In section 2, we review recent research ad-

vances in biological term annotation. Section 3 describes the methodology proposed for affix

extraction in detail. The experiment results are presented and evaluated in section 4. Finally,

section 5 summarizes the paper and introduces future work.

Related Work

A term usually corresponds to an author’s textual representation of a particular concept. It is

not easy to understand an article without precise identification of terms that are used to com-

municate knowledge. Biological term annotation denotes a set of procedures that are used to

systematically recognize pertinent terms in biological literature, that is, to differentiate between

biological terms and non-biological terms and to highlight lexical units that are related to rele-

vant biology concepts [9].

Recognizing biological entities from texts allows for text mining to capture their underlying

meaning and further extraction of semantic relationships and other useful information. Au-

tomating this process enables the large-scale processing of biomedical literature. Because of

the importance and complexity of the problem, biological term annotation has attracted inten-

sive research and there is a large number of published work on this topic [10, 11].

Current approaches in biological term annotation can be generalized into three main cat-

egories: lexicon-based, rule-based and learning-based [10]. Lexicon-based approaches use

existing terminological resources, such as dictionaries or databases, in order to locate term

occurrences in texts. Given the pace of biology research, however, it is not realistic to assume

that a dictionary can be reliably up-to-date. A drawback of lexicon-based approaches is thus

that they are not able to annotate recently coined biological terms. Rule-based approaches at-

tempt to recover terms by developing rules that describe associated term formation patterns.

However, rules are often time-consuming to develop while specific rules are difficult to adjust

to other types of terms. Thus, rule-based approaches are considered to lack scalability and

generalization.

Systems developed based on learning-based approaches use training data to learn features

useful for biological term annotation. The classification technique allows systems to automat-

ically learn from examples, and then produce solutions to similar problems using the learned
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model. Compared to the other two methods, learning-based approaches are theoretically more

capable to identify unseen or multi-word terms, and even terms with various writing styles by

different authors. However, a main challenge for learning-based approaches is to select a set

of discriminating feature attributes that can be used for accurate annotation of biological term

instances. The features generally fall into four classes: (1) simple deterministic features which

capture use of uppercase letters and digits, and other formation patterns of words, (2) morpho-

logical features such as prefix and suffix, (3) part-of-speech features that provide word syntactic

information, and (4) semantic trigger features which capture the evidence by collecting the se-

mantic information of key words, for instances, head nouns or special verbs.

As introduced earlier, the learning-based biological term annotation system ABTA extracts

feature attributes including word feature patterns, part-of-speech (POS) tag information, prefix

and suffix characters. Based on these features, the system creates the classification model and

uses the model to annotate terms in biological literature. The system obtained an 0.705 F-

score in exact term matching on Genia corpus (v3.02) [12] which contains 2,000 abstracts of

biological literature. In fact, the morphological features in ABTA are learned by recording only

the first and the last n characters of each word in classification instances. This potentially leads

to inaccurate affix information for the term annotation task.

Shen et al. [13] explored an adaptation of a general Hidden Markov Model-based term rec-

ognizer to biological domain. They experimented with POS tags, prefix and suffix information

and noun heads as features and reported an 0.661 F-score in overall term annotation on Genia

corpus [12]. In their experiments, 100 most frequent prefixes and suffixes were extracted as can-

didates, and then evaluated in terms of a score obtained by a proposed formula which assumes

that a particular prefix or suffix that is most likely inside biological terms would be least likely

outside biological terms. A threshold was chosen and considered as a good evidence for dis-

tinguishing biological terms. They reported that prefix and suffix information showed a modest

positive effect on recognizing biological terms. The proposed formula, however, distinguishes

between biological and non-biological affixes based solely on a biological corpus. This could

potentially bias the results since not all frequent affixes occurring in biological terms of Genia

corpus are good molecular biology affixes. Meanwhile, in order to choose a proper threshold,

it is necessary to scrutinize all the extracted prefixes and suffixes. This makes the process of

extracting affix features supervised.

Lee et al. [14] used prefix and suffix features coupled with a dictionary-based refinement of

boundaries of the selected candidates in their experiments for term annotation. They extracted

affix features in a similar way with Shen et al. [13]. They also reported that affix features made

a positive effect on improving term annotation accuracy.

In this project, we consider the quality of domain-specific affix features extracted via an

unsupervised method. Successful demonstration of the quality of this extraction method implies

that domain-specific affixes can be identified for arbitrary corpora without the need to manually

generate training sets.
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Methodology: PATRICIA-Tree-based Affix Extraction

PATRICIA Tree

The method we propose to extract affixes from biological words is based on the use of PA-

TRICIA tree. “PATRICIA” stands for “Practical Algorithm To Retrieve Information Coded In

Alphanumeric”. It was first proposed by Morrison [15] as an algorithm to provide a flexible

means of storing, indexing, and retrieving information in a large file. PATRICIA tree uses path

compression by grouping common sequences into nodes. This structure provides an efficient

way of storing values while maintaining the lookup time for a key of O(N) in the worst case,

where N is the length of the longest key. Meanwhile, PATRICIA tree has little restriction on

the format of text and keys. Also it does not require rearrangement of text or index when new

material is added. Because of its outstanding flexibility and efficiency, PATRICIA tree has been

applied to many large information retrieval problems [15].

Figure 1 illustrates a simple example of the growth of a PATRICIA tree under a sequence

of insertions. Suppose “ababb”, “ababa”, “ba” and “aaabba” are four words to be inserted into

PATRICIA tree. Initially, the tree is empty. The word “ababb” is first inserted as a node of the

tree. In order to insert the next word “ababa”, it is necessary to compare it with the existing

node containing the word “ababb”. The only difference of the two words is the fifth character.

Thus, the common substring “abab” is split out from both words to form a new node, while the

remaining characters of each word, “a” and “b”, become two descendant nodes of this node.

Similarly, it is necessary to compare the next inserted word “ba” with “ababb”. As they are

different from the first character, a new node for “ba” is then created from the root of the tree.

Finally, since the common character of the last inserted word “aaabba” and “ababb” is “a”, it is

then split out as a new node.

All biological words are inserted and stored in a PATRICIA tree, using which we can effi-

ciently look up specific biological word or extract biological words that share specified affixes,

and calculate required statistics.

Terminology

In order to clearly describe our proposed method, it is necessary to introduce and clearly define

some terminology. In particular, we use several notions of suffixes and prefixes, commonly

called affixes, and we define them using basic formal language terminology.

We assume that text is composed of characters from a finite alphabet. The alphabet is a

finite set of symbols Σ. In practice, elements of alphabet are ASCII characters. A string is

a finite sequence of characters from Σ, which can be empty. The length of a string w is the

number of characters in the sequence w, and it is denoted |w|. A text, which is in our case a

scientific article, is simply a long string. Two strings s and t can be concatenated by appending

one string to another, which is denoted as st or s · t. A s is a substring of string t if t = xsy for

some strings x and y. It is assumed that a string can be an empty string.

The standard definition of prefix and suffix in the formal languages theory is that a string s
is a prefix of string t if t = sx for some string x, and s is a suffix of string t if t = xs for some
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Figure 1: Growth of a PATRICIA Tree
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string x. However, since we are going to define terms prefix and suffix in a different way in our

proposed method, we will call these standard notions of prefix and suffix, general prefix and

general suffix, or if we want to include both terms under one term, general affix.

We define words as the maximal substrings of a text consisting only of the characters from

a distinguished subset of Σ, which is the set of all letters, digits, and some special signs such

as the hyphen sign ‘-’ and the slash sign ‘/’. A corpus is a finite set of texts. We use two

corpora: the Brown corpus as a general English corpus, and the Genia corpus as a domain-

specific biological corpus. We say that a word w occurs in a corpus C if there is a text T ∈ C
such that w occurs in T .

The goal of our method is to extract a set of domain-specific affixes (i.e., prefixes and

suffixes), so that we can use them as a special feature in biological term detection. Being a

domain-specific affix is not a deterministic feature of a string; instead, we use a probabilistic

model to predict a probability that given an arbitrary occurrence of an affix in a text, it has a

domain-specific function, i.e., its occurrence is related to biological domain in some way. The

task becomes more difficult by performing this function in a very unsupervised way in the sense

that we do not use information about annotated biological terms, but treat the domain-specific

corpus as unmarked, uniform text.

The first step is to identify potential affixes, which we define in the following way:

Definition 1 (Potential Affix) Given a corpus C over an alphabet Σ, a string p, |p| ≥ 2, is a

potential prefix if there are two distinct words w1 and w2 occurring in C, such that w1 = px1

and w2 = px2 for two strings x1 and x2. Similarly, a string s, |s| ≥ 2, is a potential suffix if

there are two distinct words w1 and w2 occurring in C, such that w1 = x1s and w2 = x2s for

two strings x1 and x2. A potential affix is a potential prefix or potential suffix.

For each node n in a PATRICIA tree we can construct a string pn by concatenating all

strings associated with nodes in the path from root to n. If we store all words from a corpus

in a PATRICIA tree, then the strings pn for all nodes n are exactly all potential prefixes of the

corpus. This is an efficient algorithm for finding all potential prefixes of a corpus. The potential

suffixes are extracted in a similar way by reversing all words before adding them to the tree, and

then by reversing the extracted potential prefixes at the end.

In the second step affixes are extracted from potential affixes. The notions of prefix, suffix,

and affix are defined as follows:

Definition 2 (Affix) A string p is a prefix in a corpus C if it is a potential prefix, and there are

two words w1 and w2 occurring in the corpus C such that w1 = pw2. A string s is a suffix

in corpus C if it is a potential suffix and there is a word w1, and a word w2 or prefix w2 in the

corpus C such that w1 = w2s. An affix is a prefix or suffix.

For example, “radio” is a potential prefix due to existence of the three words: “radioim-

munoassay”, “radioiodine” and “radiolabeled”. Since “immunoassay” is also a word, “radio”
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is a prefix. Actually, “iodine” and “labeled” are words as well. On the other hand, “ra-

dioi” is a potential prefix shared by the words “radioimmunoassay” and “radioiodine”, but

it is not a prefix since neither “mmunoassay” nor “odine” is a word. Similarly, “Calcium-

dependent”, “Erythropoietin-dependent” and “Ligand-dependent” share a potential suffix “-

dependent”, which is also a suffix since “Calcium”, “Erythropoietin” and “Ligand” are words.

Additionally, the word “pro-glutathione” has the suffix “-glutathione” not because “pro” is a

word, but because “pro” is a prefix. In this sense suffixes are not handled in a completely

equivalent way as prefixes.

Probabilistic Model

In order to determine the property of an affix to be a domain-specific affix, we use a probabilistic

model. We in fact use two probabilistic models—one for prefixes and one for suffixes. Since

they are analogue methods, we will use only the prefix model in our explanation.

A random event in our model is occurrence of a general prefix in a specific instance of a

word in a corpus, i.e., it is an instance of a word w = px, where p is a general prefix. By an

“instance of a word w” we mean an occurrence of a word w at a specific position in a specific

text of the corpus; otherwise, the same word may occur at many positions and in many texts.

We assume a uniform distribution of these events.

We define the following random variables for this event:

w is the word occurring in the event.

p is the general prefix occurring in the event.

PA ∈ {>,⊥} is the property of the general prefix p to be a potential prefix or not.

A ∈ {>,⊥} is the property of the general prefix p to occur as a prefix in the word w, or not.

D ∈ {Biology, Non-B} is the property that occurrence of the general prefix p in this context

is specific for biological domain, or not. In many instances this property may require a

human domain expert to be determined, and even then it may not be clear, but we assume

that it exists.

Among all random events, we are interested only in those in which p is a potential prefix.

The goal of our model is to find the expected probability that a given p will be an English affix

and actually a biological domain-specific affix; i.e., we want to find the joint probability:

P (D = Biology, A = > | PA = >, p)

Using the chain-rule property, this probability can be expressed as:

P (D = Biology, A = > | PA = >, p) =

= P (D = Biology | A = >, PA = >, p) · P (A = > | PA = >, p) (1)
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P (A = > | PA = >, p) denotes the probability that a given potential prefix is a true English

prefix while P (D = Biology | A = >, PA = >, p) refers to the probability that a given English

prefix is actually a biology related affix.

The value of P (A = > | PA = >, p) is estimated using the maximum likelihood estimation

(MLE) based on the combined corpus(CC) of a Biological Corpus (BC) and a General English

Corpus (GEC) ; i.e., it is the number of prefix occurrences of p divided by the number of times

p occurs as potential prefix in the corpus. GEC is used against BC in order to extract more

accurate biological affixes. Algorithm 1 shows the procedure of populating a PATRICIA tree

and calculating the value of P (A = > | PA = >, p) for each potential prefix.

Algorithm 1 P (A = > | PA = >, p) for Prefix

Input: words (w) ∈ Combined Corpus (CC)
Output: P (A = > | PA = >, p) for each potential prefix

PT = ∅ //PT : Patricia tree

for all words w ∈ CC do

PT← Insert(w) //Populating Patricia tree

for all internal nodes ni ∈ PT do

PA← String(ni) //Concatenate strings in nodes from root to ni, which is a potential

prefix

TPA ← PrefixSearch(PA)
//TPA : all words w ∈ CC beginning with PA

score← 0
for all words w ∈ TPA do

if Extrstr(PA, w) in PT then

//Extrstr() returns the remaining string of w without PA

score ++

P (A = > | PA = >, p)← score/|TPA|
//|TPA| is the number of words in TPA

In order to measure the value of P (D = Biology | A = >, PA = >, p), it is necessary to first

determine true English prefixes from potential prefixes. A potential prefix is considered a prefix

in our method if P (A = > | PA = >, p) ≥ 0.5. It is also necessary to consider the biological

corpus BC and the general English corpus GEC separately. It is assumed that a biology related

prefix tends to occur more frequently in words of BC than GEC. Eq.(2) is used to estimate the

value of P (D = Biology | A = >, PA = >, p).

P (D = Biology | A = >, PA = >, p) =

(#Words with PA in BC/Size (BC))/

(#Words with PA in BC/Size (BC) +

#Words with PA in GEC/Size (GEC)), (2)
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where only PA with P (A = > | PA = >, p) ≥ 0.5 are used, and the number of words with a

certain prefix is further normalized by the size of each corpus.

These probability values can be efficiently calculated using PATRICIA tree. Based on these

values and the formula given above, we can calculate the joint probability P (D = Biology, A =
> | PA = >, p) for each potential prefix p. The analogue joint probability is calculated for all

potential suffixes.

Experiment Design

We have designed the experiments to extract domain-specific prefixes and suffixes of biological

words from a biological corpus, and investigate whether the extracted affix information could

facilitate better biological term annotation. Figure 2 illustrates the overall design of our exper-

iments, which consists of three major processes: affix extraction, affix refining, and evaluation

of experimental results.

Experiment Results

Evaluation


Potential

Affixes


Biological Corpus

and


General English Corpus


Affix Extraction


Affix Refining


Patricia Tree


ABTA system


Joint probability:

P 
(
D = Biology, A = 
T
 | PA = 
T, 
a
)


D
 stands for 
D
omain,

A
 stands for 
A
ffix,

PA
 represents 
P
otential 
A
ffix

a
 represents General 
A
ffix


Figure 2: Experiment Design Diagram

In the affix extraction process, we first populate PATRICIA tree using all words in the com-

bined corpus(CC) of a Biological Corpus (BC) and a General English Corpus (GEC). Two
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PATRICIA trees are populated separately for extracting prefixes and suffixes. The suffix tree

is based on strings derived by reversing all the input words from the combined corpus. All the

potential prefixes and suffixes are then extracted from the populated PATRICIA trees.

In the affix refining process, for each extracted potential affix, we compute the value of its

corresponding joint probability of being an English affix and a biology related affix, P (D =
Biology, A = > | PA = >, p). Finally, the obtained probability value of each potential affix is

used to parametrize a word beginning or ending with PA in BC.

In the evaluation process of our experiments, the prefix-suffix pair with maximum joint

probability values is used to parametrize a word. Therefore, each word in BC has exactly two

probability values as affix feature: a value for its potential prefix and a value for its potential

suffix. We then replace the original affix feature of ABTA system [5] with our obtained joint

probability values, and investigate whether these new affix information leads to equivalent or

better term annotation on BC.

Results and Evaluation

Dataset and Environment

For our experiments, it is necessary to use a corpus that includes widely used biological terms

and common English words. This dataset, therefore, will allow us to accurately extract the

information of biology related affixes. As a proof-of-concept prototype, our experiments are

conducted on two widely used corpora: Genia corpus (v3.02) [12] and Brown corpus [16]. The

Genia version 3.02 corpus is used as the biological corpus BC in our experiments. It contains

2,000 biological research paper abstracts. They were selected from the search results in the

MEDLINE database [17], and each biological term has been annotated into different terminal

classes based on the opinions of experts in biology. Used as the general English corpus GEC,

Brown corpus includes 500 samples of common English words, totalling about a million words

drawn from 15 different text categories.

All the experiments were executed on a Sun Solaris server at the CS Faculty of Dalhousie

University. The server type is SunOS sparc SUNW, Sun-Fire-880. Our experiments were

mainly implemented using Perl and Python.

Experimental Results

We extracted 15,718 potential prefixes and 21,282 potential suffixes from the combined cor-

pus of Genia and Brown. Among them, there are 2,306 potential prefixes and 1,913 potential

suffixes with joint probability value P (A = > | PA = >, p) ≥ 0.5. Table 1 shows a few

examples of extracted potential affixes whose joint probability value is equal to 1.0. It is seen

that most of these potential affixes are understandable biological affixes which directly carry

specific semantic meanings about certain biological terms. However, some substrings are also

captured as potential affixes although they may not be recognized as “affixes” in linguistics, for

example “adenomyo” in prefixes, and “mopoiesis” in suffixes. In Genia corpus, “adenomyo” is
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the common beginning substring of biological terms “adenomyoma”, “adenomyosis” and “ade-

nomyotic” , while “plasias” is the common ending substring of biological terms “neoplasias”

and “hyperplasias”. The whole list of extracted potential affixes is available upon request.

Potential Prefixes Potential Suffixes

13-acetate 3-kinase -T-cell cytoid

B-cell CD28 -alpha-activated -bearing

endotoxin HSV-1 -coated lyse

I-kappaB ligand -expressed -globin-encoding

macrophage N-alpha-tosyl-L plasias -immortalized

adenomyo platelet -inducer -kappaB-mediated

Rel/NF-kappaB pharmaco mopoiesis -methyl

anti-CD28 adenovirus -nonresponsive -receptor

VitD3 chromatin coagulant glycemia

cytokine hemoglobin -soluble racrine

Table 1: Examples of Extracted Potential Affixes with Joint Probability Value 1.0

In order to investigate whether the extracted affixes improve the performance of biological

term annotation, it is necessary to obtain the experimental results of both original ABTA system

and the ABTA system using our extracted affix information. In ABTA, the extraction of feature

attributes is performed on the whole 2000 abstracts of Genia corpus, and then 1800 abstracts

are used as training set while the remaining 200 abstracts are used as testing set. The evaluation

measures are precision, recall and F-score. C4.5 decision tree classifier [18] is reported as the

most efficient classifier which leads to the best performance among all the classifiers experi-

mented in [5]. Therefore, C4.5 is used as the main classifier in our experiments. WEKA 3.4

machine learning toolkit [19] is applied to perform the classification algorithm. The experimen-

tal results of ABTA system with 10 fold cross-validation based on different combinations of the

original features are presented in Table 2 in which feature “WFP” is short for Word Feature

Patterns, feature “AC” denotes Affix Characters, and feature “POS” refers to POS tag infor-

mation. The setting of parameters in the experiments with ABTA is: the word n-gram size is

3, the number of word feature patterns is 3, and the number of affix characters is 4. We have

reported the F-score and the classification accuracy of the experiments in the table. There is a

tendency with the experimental performance that for a multi-word biological term, the middle

position is most difficult to detect while the ending position is generally easier to be identified

than the starting position. The assumed reason for this tendency is that for multi-word biolog-

ical terms, many middle words are seemingly unrelated to biology domain while many ending

words directly indicate their identity, for instance, “receptor”, “virus” or “expression”.

Table 3 shows the experimental results of ABTA system after replacing the original affix

feature with our obtained joint probability values for each word in Genia corpus. “JPV” is used
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Feature F-Measure Classification #

sets Start Middle End Single Non Accuracy (%) Parameters

WFP 0.467 0.279 0.495 0.491 0.864 74.59 9

AC 0.709 0.663 0.758 0.719 0.932 85.67 24

POS 0.69 0.702 0.775 0.67 0.908 83.96 3

WFP+AC 0.717 0.674 0.762 0.730 0.933 86.02 33

WFP+POS 0.726 0.721 0.793 0.716 0.923 85.96 12

AC+POS 0.755 0.741 0.809 0.732 0.930 87.14 27

WFP+AC+POS 0.764 0.745 0.811 0.749 0.933 87.59 36

Table 2: Experimental Results of Original ABTA System

to denote Joint Probability Values. Based on all three features the system achieves a classi-

fication accuracy of 87.5%, which is comparable to the results of the original ABTA system.

However, the size of the feature set of the system is significantly reduced, and the classification

accuracy of 87.5% is achieved based on only 18 parameters, which is 1/2 of the size of the orig-

inal feature set. Meanwhile, the execution time of the experiments generally reduces to around

half of the original ABTA system (e.g., reduces from 4 hours to 1.7 hours). Furthermore, when

the feature set contains only our extracted affix information, the system reaches a classification

accuracy of 81.46% based on only 6 parameters. It is comparable with the classification accu-

racy achieved by using only POS information in the system. In addition, Table 3 also presents

the experimental results when our extracted affix information is used as an additional feature to

the original feature set. It is expected that the system performance is further improved when the

four features are applied together. However, the size of the feature set increases to 42 parame-

ters, which increases the data redundancy. This proves that the extracted affix information has a

positive impact on locating biological terms, and it could be a good replacement of the original

affix feature.

Feature F-Measure Classification #

sets Start Middle End Single Non Accuracy (%) Parameters

JPV 0.652 0.605 0.713 0.602 0.898 81.46 6

WFP+JPV 0.708 0.680 0.756 0.699 0.919 84.84 15

JPV+POS 0.753 0.740 0.805 0.722 0.928 86.92 9

WFP+JPV+POS 0.758 0.749 0.809 0.74 0.933 87.50 18

WFP+AC+POS+JPV 0.767 0.746 0.816 0.751 0.934 87.77 42

Table 3: Experimental Results of ABTA System with Extracted Affix Information

Moreover, we also evaluated the performance of the exact matching biological term annota-

tion based on the obtained experimental results of ABTA system. The exact matching annota-

tion in ABTA system is to accurately identify every biological term, including both multi-word

terms and single word terms. Therefore, all the word position classes of a term have to be

13



classified correctly at the same time. An error occurring in any one of “Start”, “Middle”, and

“End” classes leads the system to annotate multi-word terms incorrectly. Consequently, the

accumulated errors will influence the exact matching annotation performance. Table 4 presents

the exact matching annotation results of different combination of features based on 10 fold

cross-validation over Genia corpus. It is seen that after replacing the original affix feature of

ABTA system with our obtained joint probability values for each word in Genia corpus, the

system achieves an 0.664 F-score on exact matching of biological term annotation, comparable

to the exact matching performance of the original ABTA system. In addition, when the feature

set contains only our extracted affix information, the system reaches an 0.536 F-score on exact

matching. Although it is a little lower than the exact matching performance achieved by using

only the original affix features in the system, the feature set size of the system is significantly

reduced from 24 to 6.

Feature Exact Matching Annotation #

sets Precision Recall F-score Parameters

AC 0.548 0.571 0.559 24

WFP+AC+POS 0.661 0.673 0.667 36

JPV 0.527 0.545 0.536 6

WFP+JPV+POS 0.658 0.669 0.664 18

Table 4: Exact Matching Annotation Performance

In order to further compare our method with the original ABTA system, we attempted eleven

different sizes of training data set to run the experiments separately based on our method and

the original ABTA system. They can then be evaluated in terms of their performance on each

training set size. These eleven different training set sizes are: 0.25%, 0.5%, 1%, 2.5%, 5%,

7.5%, 10%, 25%, 50%, 75% and 90%. For instance, 0.25% denotes that the training data set is

0.25% of Genia corpus [12] while the rest 99.75% becomes the testing data set for experiments.

It is observed that there are about 21 paper abstracts in training set when its size is 1% , and 52

abstracts when its size is 2.5%.

For each training set size, we randomly extracted 10 different training sets from Genia cor-

pus to run the experiments. We then computed the mean classification accuracy of 10 obtained

classification accuracies. Figure 3 was drawn to illustrate the distribution of mean classification

accuracy of each training set size for both methods, with the incremental proportion of training

data. The X axis in Figure 3 has been log-scaled with base 10 in order to better compare the

results of two methods. It is expected that larger training set size leads to better classification

accuracy of experiments. The change patterns of mean classification accuracy obtained by our

method and the original ABTA system are similar. At the beginning, the mean classification

accuracy increases fast and sharply with the increase of the proportion of training data from

0.25% to 10%, and then tends to keep its continuous increase at a slower rate. It is also seen

that our method achieves better classification performance when the proportion of training data
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is under 2.5%.

Figure 3: Distribution of Mean Classification Accuracy

In order to determine if the classification performance difference between our method and

the original ABTA system is statistically significant, we performed one-tailed t-Test [20] on

the classification results with our hypothesis that the mean classification accuracy by our pro-

posed method is higher than the mean classification accuracy by the original ABTA system.

The significance level α is set to be the conventional value 0.05. As a result, the classification

performance difference between two methods is statistically significant when the proportion of

training data is 0.25%, 0.5%, 1% or 2.5% since the P values are much lower than α. Table 5

shows the P values of t-Test results for the training set sizes 0.25%, 0.5%, 1% and 2.5%. This

demonstrates that the ABTA system adopting our method outperforms the original ABTA sys-

tem in classification accuracy with smaller proportion of training data, and achieves compara-

ble classification performance with the original ABTA system when the proportion continuouly

increases. A pre-annotated data set is not always available for some domains, for example bio-

logical domain. Therefore, it is necessary for domain experts to manually annotate the raw data

sets. Instead of annotating a large data set by hand, it is understandable that domain experts

are more willing to manually evaluate small amount of data. The annotated data can then be

used as a seed training data set for the annotation system to further annotate the experimental

data. Hence, our method would be more preferable in this case as it performs better with small

amount of training data.
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One-tailed Training set size

t-Test 0.25% 0.5% 1% 2.5%

P value 0.029779 0.000605 0.000201 0.022885

Table 5: One-tailed t-Test Results

Conclusions

In this paper, we have presented an unsupervised method to extract domain-specific prefixes and

suffixes from the biological corpus based on the use of PATRICIA tree. Our method achieves

an overall classification accuracy of 87.5% in locating biological terms, and derives an 0.664

F-score in exact term matching annotation, which are all comparable to the experimental results

obtained by the original ABTA system. However, our method helps the system significantly

reduce the size of feature set and thus improves the system efficiency. The system also obtains

a classification accuracy of 81.46% based only on our extracted affix information. This demon-

states that the affix information acheived by the proposed method is important to accurately

locate biological terms.

We further explored the ability of our method to learn from small seed training data by grad-

ually increasing the proportion of training data from 0.25% to 90% of Genia corpus. One-tailed

t-Test results confirm that the ABTA system adopting our method achieves better performance

than the original ABTA system when the training corpus is small. The main result of this work

is that affix features can be parametrized from small corpora at no cost in performance.

There are some aspects in which the proposed method can be improved in our future work.

In the evaluation process of our experiments, for example, we integrated all the obtained joint

probability values of potential affixes with every word in Genia corpus. We are interested in

investigating whether there exists a certain threshold value for the joint probability which might

improve the classification accuracy of ABTA system to some extent. However, this could import

supervised elements into our method. Moreover, we would like to incorporate our method

into other published learning-based biological term annotation systems to see if better system

performance will be achieved. However, superior parametrization will improve the annotation

performance only if the affix information is not redundant with other features such as POS.
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