Multi-Agent Systems for
Internet Information Retrieval using
Natural Language Processing

(CS-98-24

Vlado Keselj

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

e-mail: vkeselj@uwaterloo.ca

September 21, 1998

Abstract

In the context of the vast and still rapidly expanding Internet, the problem of
Internet information retrieval becomes more and more important. Although
the most popular at the moment, the keyword-based search engine is just one
component in a complex software mosaic that needs to be further developed
in order to provide a more efficient and scalable solution.

This report will argue that the multi-agent approach is a viable method-
ology for this task. The main issue is how the natural language processing
could be used in it, as well as why it should be used. Two implementations
and their theoretical foundations are presented: One is the natural language
parser generator NL PAGE, which produces parsers in C or Java; and, the
other one is the communication part of the multi-agent framework MIN. The
higher levels of the framework are also discussed and a simple implementation
of a multi-agent system is presented.

Acknowledgements

I wish to thank my supervisors, Professor Graeme Hirst and Professor
Forbes Burkowski, for their guidance and patience throughout my program;
and, especially, for their time and effort during the final phase in which this
thesis was created.

I also wish to thank to the second readers of the thesis, Professor Fahiem
Bacchus and Professor Chrysanne DiMarco, for their efforts and valuable
comments. I wish to extend my gratitude to Professor Frank Tompa for pro-
viding my financial support, and for giving me his comment and suggestions,
and some references relevant to my work.

Last, but not least, I wish to thank my wife Tanja and my son Stefan for
their continuous support, encouragement, and sacrifices in the course of my
graduate studies.

Contents

1 Introduction 1
1.1 Description of the problem 2
1.2 Multi-agent systems 7
1.3 Use of Natural Language Processing (NLP). 12
1.4 MIN approach 15
1.5 Related Work 19
1.6 Overview of chapters 23

2 An NLP Model 24
2.1 Requirementso 26
2.2 Lexical analysis L. 28
2.3 Syntactic analysiso 35

2.3.1 Context-free grammars 35
2.3.2 Feature handling 36
2.3.3 Movement phenomena 38
234 Chart parsing 42
2.3.5 Algorithmso 44
2.4 Higher levels of NLP, or how to use the parser 52

11

3 NL PAGE: Parser Generator System

3.1 Parser generator structure
3.2 Theparseforest
3.2.1 Examples
3.2.2 Formal specification

3.3 Parse forest translation

3.4 Intermediate format and code generation

4 Framework of MIN

4.1 Communication issues
4.2 MIN communication layers

4.2.1 Agent socket layer (AS)

4.2.2 Message exchange layer (Comm)

4.2.3 KQML/KIF layer (KK)
4.3 KQML/KIF communication module
4.3.1 Applet KKCM
432 Team KKCM
4.4 Agent structureo

5 Experiments and Demonstration

51 NLPAGE
5.2 A simple MIN system

6 Conclusion

A Abbreviations

B Notation and Terminology

CONTENTS

103

106

109

CONTENTS

B.1 Algorithms and data structures

B.2 Regular expressions . .

C Web links
C.1 Search engines
C.2 All-in-one pages
C.3 Meta-search engines . .

C.4 Alternative search sites
D Test sentences

E Agent log files

111

109
109

113
113
113
114
114

115

121

List of Tables

5.1 Parsing timeso

5.2 Parsing time statistics 00

v

List of Figures

1.1 General multi-agent architecture 15
1.2 Structure of FERRET and NetSerf 20
2.1 Parsetree 35
2.2 Movement in general00 L 39
2.3 Movement in our modelo 40
2.4 Movement to the right and down the tree. 40
2.5 Actual parse “tree” 42
26 ...andatreeagain L. 43
2.7 Chart and a parse treeinit 43
2.8 mep — chj.ep > rcomp 49
3.1 Parser generator flowchart 0L 57
4.1 Example communication neto 76
4.2 Applet KKCM structure 89
4.3 Team KKCM structure 90
4.4 Communication layers 91
4.5 Q/A-agent structureo 93
4.6 T-agent structureo 93
4.7 [I-agent structure oL 94

vi

4.8

5.1
5.2
9.3
5.4
9.9

LIST OF FIGURES

L-agent structure oo 94
Timing results for the generated C and Java parsers 96
Demonstration MIN MAS: Initialization 99
Demonstration MIN MAS: Entering a query 100
Demonstration MIN MAS: NL parsing 101

Demonstration MIN MAS: Retrieving the answer 102

Chapter 1

Introduction

The Internet has vast potential for further development, new applications,
and new solutions. One of the challenging problems that needs an improved
solution is the problem of Internet Information Retrieval (InIR).!

In this chapter, we will start with the description of the problem of InIR
in Section 1.1. Section 1.2 is an introduction to multi-agent systems; Sec-
tion 1.3 is an introduction to natural language processing; Section 1.4 gives
an overview of related work; and, Section 1.5 presents an overview of the
remaining chapters.

LAll abbreviations used in this document are expanded the first time they are used.
They are listed in the Appendix A along with their expansions and the page numbers of
their first occurrences.

2 CHAPTER 1. INTRODUCTION

1.1 Description of the problem

The environment of our problem is the Internet, seen as a large, distributed,
and heterogeneous source of information. Although this approach is some-
what narrow compared to the Internet with its full functionality, the multi-
agent (MA) part of the methodology that is going to be presented can be
directly applied in solving any massively distributed Internet problem. The
presented demonstration system MIN (Multi-agent system for Internet in-
formation retrieval using Natural language processing) will illustrate this
approach at the implementation level of detail.

What does the Internet information space consist of?7 Mostly, on-line
WWW (World Wide Web) documents; but, we can easily see that it is more.
The Internet, from the user perspective, is perceived through a set of appli-
cations based on the point-to-point communication links that are provided
by the TCP/IP (Transmission Control Protocol/Internet Protocol) protocol
stack. For example,

e Many applications frequently end up with a full-sized InIR problem,
where we want to find a relevant document, relevant item, or, generally,
a relevant point in the information space consisting of Telnet sites,
news groups, news group postings, FTP (File Transfer Protocol) sites,
Gopher documents, and WWW documents (pages, movies, audio files,
code, radio broadcasts).

e E-mail: How can we find out if someone has an e-mail address, and
how can we find that address? Finding interesting mailing lists is a
still better example.

e The r-utilities (remote utilities), such as remote login (rlogin), remote
shell (rsh), and remote copy (rcp): One might be surprised that this
kind of application has anything to do with InIR. But even in this case,
we may want to find out the IP quadruple address that corresponds to a
domain name, or vice versa. This is already solved through the domain
name system; but, it is interesting to notice that this is a problem that
can be classified as an InIR problem and could be treated in a more
general context.

1.1. DESCRIPTION OF THE PROBLEM 3

We now introduce a couple of terms that are going to be used throughout
the document. The Internet information space is the abstraction of the
Internet we are dealing with. We will denote it as the Inl-space. The Inl-
space is a set comsisting of a finite number of elements which are called
resources. They are also referred to as the Internet resources, the points
in the Inl-space, or the elements of the Inl-space. The space is dynamically
changing, so, strictly speaking, it is actually a sequence of sets where each set
corresponds to a certain moment in time. Informally, we simply say that Inl-
space is a “dynamic set,” since we assume that it is in any case an intractable
task to determine the complete content of that space at any moment. We
will assume that the resources are exactly those items that are addressable
by URL’s (Uniform/Universal Resource Locators).

The basic problem of InlIR is the following: A user’s queryis given. It can
be in different forms but we assume that the most direct form is the natural
language (NL) form. The task is to find a relevant subset of the Inl-space,
i.e. a subset of the relevant resources for that query. The relevance relation
is semantic, high-level, and even subjective; so we can only approximate it
with a computational relation. This basic problem can be extended to a
more general form. First, we want to rank the relevant subset, 1.e. to give
the relevance order of its elements with the most relevant resource being the
maximal element, the second-most relevant appearing next, and so on. We
also want to be able to give answers that can be derived from the relevant
subsets; e.g., to find the number of elements in the relevant subset.

Two additional conditions are important to keep in mind when dealing
with the InIR problem. First, Inl-space is changing at a fast rate; and,
second, a large number of users are doing InIR in parallel.

The most popular tools currently used for InIR are the search engines?.

They use the classical IR (Information Retrieval) approach, which consists
of gathering site descriptions associated with their URL’s into an index,
and, afterwards, matching user queries to relevant descriptions. The relevant
descriptions are ranked and mapped to a list of URL’s, which is returned to
the user, who can now manually browse the sites. The matching algorithm

2Appendix C contains the URL’s of some popular search engines, all-in-one pages, and
meta search engines.

4 CHAPTER 1. INTRODUCTION

is always keyword-based, which leads to certain drawbacks.

Search engines are very useful InIR systems and we are not trying to
replace them, but they have certain inherent limitations and the concept
needs to be extended. They can be the basis for further development of
some new InIR systems.

Let us summarize some significant disadvantages of the classical approach
used in the search engines:

1. Rigidity: The strategy assumes a large, unitary retrieval system with
a hard-wired interface to the Internet. There 1s an inherent risk of be-
coming obsolete in such a rapidly changing environment. For example,
HTML (Hypertext Markup Language) is continually being enriched
with new features, and one can never know what new communication
form will be developed tomorrow.

2. Expensive total indexing: With classical IR systems, the process of
incorporating incoming information into a database (e.g., updating in-
verted files, or signature files) is expensive, but it is not a significant
drawback if it is a relatively rare operation. However, if we take into
account that the Inl-space is dynamically changing and that the links
are unreliable, then frequent updates of the database are necessary,
making this problem a major issue.

3. Expensive one-to-all communications: A centralized IR system would
require frequent updates, which means frequent Internet communica-
tions. Every centralized system on the Internet used by many users is a
bottleneck, and, as a consequence, there is a growing number of search
engines. Each search engine updates its index by making one-to-all
connections. Hence, the same data is retrieved many times without ef-
fective reuse. This creates a substantial and unnecessary network load.
If there are N Internet resources and M search engines, then to keep
their index databases up to date, they would need to make M - N con-
nections in relatively short periods of time, which is far from being an
effective solution for a large M.

An unwanted situation also arises concerning the processing cost: if
different users make the same or similar queries, their results cannot be

1.1. DESCRIPTION OF THE PROBLEM 5

effectively reused because of the lack of communication among retrieval
clients and information servers that are not directly related.

4. Hidden information: A large amount of information is hidden inside
archives (databases), such as FTP sites and various search-engine in-
terfaces. Since we do not have access to complete information in those
databases, we cannot maintain a keyword list for the hidden informa-
tion. Consequently, if a user wants a document that is possibly in an
archive we need a more sophisticated way to recognize that archive
as relevant than keyword matching. We can use only the front-end
page of the archive, a readme file, or something similar, which are only
semantically connected to the user’s query.

5. Keyword barrier: Using ordinary keyword matching, one can easily re-
trieve an unmanageable number of Internet pointers about a popular
topic. This can happen if we are looking for pointers to Web pages, or,
especially, if we are retrieving news articles from Usenet. A more ad-
vanced technique such as conceptual matching is required to get around
this problem. This limitation is sometimes called the keyword barrier

[Mau91la).

There are alternative approaches to get around these problems.

One trivial approach is the use of all-in-one pages. All-in-one pages sim-
ply provide an easy way for the user to query various search engines in par-
allel. This method directly depends on the search engines, so we cannot say
that it brings any essential improvements. An interesting issue here is what
the search-engine owners have to say about this kind of access. Because,
their interest lies in the advertising which is effective only during a direct
user access. One can expect that they would obstruct this kind of indirect
access by periodically changing the user interface, for example.

A similar strategy and the same kind of problems are evident in another
popular approach-—meta-search engines. They also query multiple search
engines, but they do other more sophisticated subsequent processing—such
as filtering, ranking, and combining—and then present results to the user.

Other options include multi-agent systems and use of natural language

6 CHAPTER 1. INTRODUCTION

processing. A synthesis of these two approaches is the key concept pursued
in this thesis.

1.2. MULTI-AGENT SYSTEMS 7

1.2 Multi-agent systems

The development of MAS’s (Multi-agent Systems) is based on work in two
areas—artificial intelligence (AI) and distributed systems.

Let us try to explain why use of Al methods is natural in InIR. Currently,
the Internet can be imagined as a flat low-level structure based on the point-
to-point communication links activated with considerable, manual (human)
participation. A human is presumably an intelligent entity and so the In-
ternet content and its navigation mechanisms are based on this intelligence
assumption. In this way, it has been possible to get such a huge information
space, practically integrating the whole planet, in such a short time. But
now, since such an intelligence-assuming environment has been created, it
requires Al techniques to manage it. Probably the most obvious example is
a simple Web page. If we want to automatically use its content in a fashion
more sophisticated than collecting keywords, or collecting links embedded in
it for further navigation, then the most flexible, robust, and appropriate way
to do this is to try to understand some of its content and to reason about it.
This necessarily leads to the realm of Al

Agents. The notion of agent has become both a crucial term in Al and
a frequent buzzword having a wide range of definitions. Nevertheless, there
are some common characteristics which roughly describe what an agent can

be.

In their book Introduction to Artificial Intelligence—a Modern Approach
[RN95], Russell and Norvig based the whole problem of Al around the notion
of agent. They say, on page 31:

An agent is anything that can be viewed as perceiving its en-
vironment through sensors and acting upon that environment
through effectors.

This looks like a very general definition and a lot of things end up being
agents if we apply it. But on page 33 of the same book, we concur with the
following sentence:

8 CHAPTER 1. INTRODUCTION

The notion of an agent is meant to be a tool for analyzing sys-
tems, not an absolute characterization that divides the world into
agents and non-agents.

Considering general resources about agents, we can mention two more
references: Stan Franklin and Art Graesser’s paper [FG96] gives various def-
initions of agents and proposes the beginning of a taxonomy of autonomous
agents. In “Agent-Oriented Programming” [Sho93], Shoham presents a dif-
ferent approach, introducing agent-oriented programming (AOP) as a spe-
cialization of object-oriented programming (OOP).

So, what 1s the concept of an agent that we want to adopt before going into
the task of specializing it for our specific problem? We can address various
levels of generality, and emphasize various characteristics of an agent. The
starting position is that an agent is any entity inhabiting an environment,
sensing that environment and acting within it. This is called the reactive
property of an agent [FG96]. It is a quite general definition, and many things
can be called agents: humans, thermostats, computer programs, and so on.
We can agree that humans are classified as agents; actually, they are the
ideal agents—which 1s a good reason to avoid giving a precise computational
definition of an agent. Conversely, it is not very useful to see a thermostat
or every computer program as an agent.

As Russell and Norvig’s quote suggests, the issue i1s not to distinguish
precisely between agents and non-agents, but to (imprecisely) decide when it
1s advantageous to see something as an agent. We can decide that by look-
ing at the typical properties that agents possess. The following description
should be qualified by adding the word “usually” in each sentence:

o Agents are relatively autonomous, working on behalf of someone else—
another agent or a human.

e Their environment is complex and they can sense the results of their
actions.

e The mapping percept-to-action is neither trivial nor simple, but the
sequence of perceptions and actions i1s done in order to achieve a high-
level goal.

1.2. MULTI-AGENT SYSTEMS 9

o Agents are complex and high-level systems.

o We talk about the states of an agent in terms of mental categories; so,
an agent has goals, beliefs, commitments, choices, knowledge, and so
on.

o Agents are flexible and able to learn.

o Agents are temporally continuous; i.e., their state is persistent over a
long period of time.

e Because of the complexity of its environment, an agent usually does
not know all about it but only about one part of it which is closest—its
immediate neighborhood. This implicitly declares the environment to
be a space and associates the agent with its position in that space.
Then, we can talk about the agent’s mobility. An agent can be mobile
or tmmobile. An agent is mobile if it can autonomously change its
location, otherwise it is immobile. If an agent is mobile, then we can
discuss its mobility of state—an agent’s state is mobile if 1t does not
change during a move from one location to another.

These are general characteristics of an agent. We are interested in a more
specific type of agent—Internet agents. Internet agents are computational
software agents—which distinguishes them from biological and robotic agents
[FG96|. Their environment is the Internet and they communicate with other
agents and users. They are not mobile. Our agents can also be classified as
information gathering agents because of their IR goals.

As mentioned, Shoham [Sho93] proposed a new programming paradigm—
agent-oriented programming (AOP). We are going to rely on some of his ideas
concerning the relation between AOP and OOP, but it i1s more appropriate
to discuss them after multi-agent systems are introduced.

Multi-agent systems (MAS’s) If two or more agents can communicate
among themselves, then we can consider a MAS. A group of agents consti-
tutes a MAS only if it is designed in that way. For example, if we have two
chess-playing agents playing chess, then it is not very useful to call them a
MAS. A set of two or more agents is a MAS only if they work cooperatively

10 CHAPTER 1. INTRODUCTION

in solving their tasks. A MAS can be seen from the outside as a single agent
composed of less complex agents, which are then called the sub-agents.

The paradigm of AOP is closely related to OOP. In OOP the data and
algorithms encapsulated as objects. Programming involves passing messages
between objects, 1.e. by invoking the object methods. In this approach, a pro-
grammer is provided with a powerful way of modeling the world. Compared
to structured programming, for example, the higher level of abstraction in
OOP makes the handling of complex tasks much easier. The main parallel
between OOP and AOP is the object-agent analogy. Like objects, the agents
also encapsulate data in the form of their mental states and have certain
behaviors according to their algorithms that are analogous to object meth-
ods. The agents inside a MAS communicate by passing messages, as well.
The notions of inheritance and overloading have their equivalents in AOP,
although we need much more experience and understanding of MAS’s to be
able to effectively use these design features. Perhaps the most important
similarity lies in the programmer’s mind in the processes of designing an
object-oriented program and a MAS. In this view, it makes sense to talk
about AOP only in the context of MAS’s and not individual agents.

The differences are also quite obvious. Objects are packed physically in
one program while agents are more separated, often running on different ma-
chines and communicating over physical communication links. Agents have a
higher level of encapsulation; e.g., it is not possible to access data in an agent
directly, it has always to be done by passing messages. Although objects in
OOP hide the actual way in which their methods are executed, their interface
is precisely defined and a lot of actions are done sequentially. On the other
hand, agents have a more general interface and do not significantly depend
that much on each other’s specific message formats. Messages have a more
flexible structure expressed in a high-level language. Agents normally work
in parallel, with the exception of situations when one agent is waiting for
another. Some of these differences disappear if we have in mind distributed
object systems, which are even more close to MAS’s.

A MAS can be open or closed. A MAS is open if the outside agents, not
created as a part of it, can join the system. Otherwise, a MAS is closed.

Our approach is based on an open, Internet, information gathering MAS.

1.2. MULTI-AGENT SYSTEMS 11

It relies on a more general idea about the open Internet MAS’s. Namely, if
we have a standard method for inter-agent communication on the Internet,
then various Internet agents and Internet MAS’s could combine and interact
autonomously, forming large super-MAS’s. The first step in this direction 1s
the definition of a standard inter-agent communication language (or, more
generally, the communication form). The inter-agent communication lan-
guage has to be very rich to express the universe of various tasks, functions,
facts, etc. among agents. A lot of work has already been done in the area
and, although there is not a standard, the two languages KQML (Knowledge
Query and Manipulation Language) [Fin97b] [LF97] and KIF (Knowledge
Interchange Format) [Fin97a] make a combination that seems to be closest
to a standard. Actually, of these two, only KQML is an inter-agent commu-
nication language, but KIF fits in as a necessary complement. KQML is used
to express the agent’s attitude towards certain information, such as querying
or stating. The information itself is embedded in the KQML message and it
1s expressed in a language called the content language. The content language
can be KQML, or some other language like KIF, SQL, Prolog, etc. We have

chosen KIF, which is a knowledge representation language.

12 CHAPTER 1. INTRODUCTION

1.3 Use of Natural Language Processing (NLP)

People have been trying to make computers understand natural language
since the creation of computers themselves. It has proven to be a hard
problem—it has not been solved yet, and it is not likely to be solved soon.
The only techniques we can use are the partial ones typically developed in
the symbolic programming languages Lisp and Prolog, which are inherently
not as efficient as some lower-level languages.

NLP has four levels of processing: lezical, syntactic, semantic, and dis-
course (pragmatic).> The lexical level is the level of word recognition. Ac-
tually, the units of a NL that are recognized are called lezemes. Besides
recognition, any lexeme processing is done at this level, for example, finding
the part-of-speech tags, stemming, prefix and suffix analysis, and all other
kinds of word derivations. At the syntactic level, the syntactic structures
of sentences are constructed. The semantic level of processing reveals the
meanings of isolated sentences. At the discourse level, we build our global
world model and decide how it is affected by the NL speech that we analyze.

The idea of using NLP for IR is not new, and the connection between
the two areas is quite straightforward. In the domain of IR, we typically
have a large collection of documents in a NL. If we take into account that
the easiest way for the user to express her/his wishes is NL as well, the
connection is there. The relation between these two areas is not superficial
nor simply formal, as might be concluded from the above argument. In the
core of the most challenging questions in IR is our (in)ability to deal with
the higher levels of NLP. When we say that a document is relevant for a
query we mean that the meaning of the document satisfies the meaning of
the query—that kind of matching would be a part of the perfect IR.

However, we are far from this goal since we do not know how to do
complete NLP. Fortunately, we can still do partial processing and use its
results. Stemming is a low-level NLP algorithm that is very frequently used
in IR systems. So, for example, if the user is looking for documents containing
the word “house,” then, using a stemming algorithm, a program can decide

3There are more levels of NLP but we are concerned here only with these four. More
information can be found in [A1195].

1.3. USE OF NATURAL LANGUAGE PROCESSING (NLP) 13

that documents containing the word “houses” are relevant. Another useful
technique is semantic expansion. For example, if documents containing the
word “died” are comsidered relevant, then documents containing the word
“killed” should be also taken into consideration.

A much more involved use of NLP in IR is done in the form of conceptual
IR. It is an attempt to do the ideal IR—to match the meaning of the user’s
query to the meaning of the retrieved documents. As the term conceptual
suggests, meaning is represented by concepts. Since this approach relies on
higher levels of NLP, it is difficult to implement. Issues include concerns such
as deciding what a concept is, how to extract concepts from the NL texts,
and how to do concept matching.

The inefficiency of existing NLP systems is a major obstacle in using them
in IR. If we want to use an NLP system to analyze the documents in a large
document collection—and it i1s always large in IR—then it has to be very
efficient and robust to be useful in practice. As mentioned earlier, existing
NLP systems are typically not very efficient.

What can be said about InIR in this context? In InIR we know the
document collection in advance—it is the Inl-space; and we know it is huge.
In a collection of that size, the use of NLP is needed even more, because
keyword-based retrieval methods tend to retrieve too many documents. On
the other hand, it is more difficult to use NLP, not only because we have
more documents in the document collection, but also the collection is very
dynamic with a large number of documents being created and deleted. Thus,
emphasis must be put on the efficiency of the processing, which is precisely
a weak point of existing NLP systems. A solution is to restrict the NLP
to its lower levels, which is not what we have in mind. A more positive
approach is to implement distributed NLP so that the processing cost is
widely distributed in the same way the Internet resources are. The MAS’s
are appropriate for this task.

Although the combination of NLP and MAS’s has already been discussed
by some researchers, it is still quite novel in the area of InIR (relative to
InTR and MAS’s, which are also novel). They are used independently: For
example, in [CH95], NLP is used in InIR without a mention of MAS’s; while
in [Kar96], a MAS for InIR does not use NLP but the system is based on

14 CHAPTER 1. INTRODUCTION

the vector-space model—an advanced, but nonetheless keyword-based IR
method.

1.4. MIN APPROACH 15

O
%ﬁ Query-answering agent
Top-level planning agent
A
()
AN NI SN
]] \
Low-level retrieval agents
5

- - Internet
“ “ Information resources

Figure 1.1: General multi-agent architecture

Intermediate agents

1.4 MIN approach

We can now present an outline of our approach, which we call MIN, for
MAS + InlR + NLP, because it combines MAS’s and NLP in solving the
problem of InIR.

A generalized scheme of a MAS that we use for InIR is shown in Fig-
ure 1.1. A user communicates with the query-answering agent (Q/A-agent,
Q/A, QA). The Q/A-agent transforms the query into an appropriate internal
format and passes it to the top-level planning agent (T-agent, TA). The T-
agent develops a high-level plan and communicates more specific tasks to the
intermediate agents (I-agents, IA). We need the I-agents to effectively com-
municate, exchange, and reuse knowledge gathered by various agents working
on different tasks and/or for different users. We can have no I-agents at all,
or have one or more levels of I-agents in the agent hierarchy.

Finally, several low-level retrieval tasks are sent to the bottom of the
hierarchy—to some of the low-level retrieval agents (L-agents, LA). Each of
the L-agents is capable of making a specific type of connection or perhaps

16 CHAPTER 1. INTRODUCTION

connect to just one specific Internet resource. For example, an L-agent can
be capable of connecting to a specific search engine. It can open a connection,
form an appropriate query, get the results and pass them up the agent hier-
archy. The role of the I-agents and the T-agent in this bottom-up direction
is to filter and to combine information. Results finally reach the /A-agent,
which presents them to the user and the interaction continues.

These are the four general types of retrieval agents. However, the actual
agents are more specialized than this. They are designed with more specific
capabilities and, since they have persistent knowledge bases, they can spe-
cialize in certain domains over time. This is especially true of the I-agents,
which are very loosely defined.

The functionality of the I-agents is split into two sets of tasks:

1. transforming and passing the query in a top-down direction, and

2. transforming and passing the results in a bottom-up direction.

A natural question arises at this point: Why do we not assign these tasks
to two different types of agents? One important expected feature of the I-
agents 1s their ability to reuse information in the fashion of a cache memory.
After filtering and passing up the results, the I-agents can keep the results
(selectively or not) in their persistent knowledge base and use them if a
similar query comes up. They would not be able to do that if they never saw
the results.

There can be specialized I-agents that are not part of this two-direction
information flow. They can be recruited by another I-agent to do a specific
task that might be only remotely related to information gathering. We will
leave this option open but it is not the main concern of our discussion.

There are two areas where NLP is used: in the user-MAS interaction and
in the process of resource indexing and matching. These two areas map to
the Q/A-agent and to the I-agents. The Q/A-agent translates the user’s NL
query into an internal form and, later on, it can use NL generation to produce
results. The I-agent activities of resource indexing and matching are based
on NL processing of the resource content or the information associated with
the resources, like an FTP readme file, the front page of a search engine,

1.4. MIN APPROACH 17

or a manually created description. These two types of NLP are not merely
distinguished by the agent types; the differences are deeper than that. In
Q/A-agent processing, we prefer more precise NLP, even though it may take
more running time—usually, only one sentence is processed per user query
so the time is not a problem. On the other hand, it is preferable that the
user is properly understood. The I-agent has the opposite requirements. It
processes a large number of documents; hence, it is important that it takes
as little time as possible. Parsing correctness is not as vital—if the parser
cannot parse the whole sentence, the sub-sentence phrases can still be useful.

Now, that we have completed the introduction of the MIN approach, we
can explain why this approach is a good solution to the InIR problem. Let
us review this approach in the context of the disadvantages associated with
the standard IR approach that we listed in Section 1.1.

1. Rigidity: The multi-agent model is flexible. If we want to adopt a
new Internet communication form, then we only have to create a new
low-level retrieval agent (L-agent). It will speak the new Internet “lan-
guage” on one side and the inter-agent communication language on the
other.

2. Ezpensive total indexing: There is no need for frequent updates. The
agents will try to find the answer dynamically, in the allotted search
time: they check their private knowledge bases, ask other agents, and
then use the Internet resources.

3. Expensive one-to-all communications: The network communication over-
head is reduced, since the agents memorize and exchange useful infor-
mation among themselves. They are not trying to collect information
in advance but in a lazy fashion.

4. Hidden information: Using the semantical level of NLP, the I-agents
can match a user query to its generalizations, for example, a description
of an archive where the answer to that query can be found.

5. Keyword barrier: The use of NLP and conceptual matching is aimed
at overcoming the keyword barrier. Using these more sophisticated

18

CHAPTER 1. INTRODUCTION

matching criteria, the number of retrieved items is reduced to a man-
ageable number. On the other hand, some relevant resources could be

detected even though they could be marked irrelevant in the keyword-
based models.

1.5. RELATED WORK 19

1.5 Related Work

The MIN approach to the problem of InIR is the intersection of several areas
of computer science, most of which are new. NLP and IR have some history,
but the current work on agents and MAS’s, the Internet and InlIR is quite
recent and, in addition, very dynamic, and relatively immature. In such cir-
cumstances it is difficult to present related work in an organized manner that
clearly extracts the main structure of the most important results. Instead,
we will give a list of the publications, projects, and resources that had the
most influence on this approach.

Starting from NLP, Allen’s book Natural language understanding [A1195]
1s a standard textbook. It provides a good overview of the known NLP tech-
niques and we will frequently refer to it for NLP terminology, explanations,
and algorithms.

Conceptual information retrievalis analyzed by Mauldin [Mau91a] [Mau91b].
His FERRET system used NLP to retrieve news articles from Usenet. The
problem of NLP inefficiency was challenged with an interesting NLP tech-
nique called text skimming. The concepts were represented by case frames,
which were filled using scripts called sketchy scripts. Relevance matching is
done using a lexical knowledge base that includes some semantic knowledge
about the words. The system was never finished, although very encouraging
results were obtained.

A similar idea was used in the NetSerf system by Chakravarthy and
Hasse [CH95].1t is a less sophisticated system than FERRET, but the ba-
sic idea is similar. They also use NLP to construct case frames, which are
compared in the matching process. Given a user query, NetSerf tries to find
Internet archives that could contain information relevant to that query. It
uses semantic matching based on the semantic relations provided by Word-
Net [Mil95] [Mea] and an on-line Webster’s dictionary. NetSerf is also an
experimental system, which i1s not finished, but showed some good results
compared to the classical IR system SMART.

These two systems represent two approaches that have several things in
common:

20 CHAPTER 1. INTRODUCTION

I [
Query Texts M

Query
processor
Query i :
representation Matching
[
[

Relevant texts H

Text
processor

Text l
representations

Figure 1.2: Structure of FERRET and NetSerf

e both of them recognize the need for NLP in InIR,

e they use case frames for query and text representations, and for the
matching process, and

e they use the global structure of a classical IR system (Figure 1.2).

In some sense, they are complementary since FERRET implemented a parser
for incoming texts that were to be searched (Usenet news) and the query
processor was never implemented, while NetSerf had a query processor and
the text frames were built manually.

Let us mention two other up-to-date systems in the development phase
which try to use NLP for InIR. One is the REASON system [AGK™97]
by Anikina et al. and the other is the IRENA system [AAT97] by Aram-
patzis et al. In the REASON system, the document contents are stored into
a knowledge base and matching is done using inference rules. In IRENA,
matching is based on the “noun phrase co-occurrence hypothesis.” The hy-
pothesis states that the nouns embraced by a noun phrase are semantically

1.5. RELATED WORK 21

related. Thus, if the nouns contained in a noun phrase in the user’s query
are found again in a noun phrase in a document then the document gets a
high relevance weight.

The main difference between our approach and the previous systems is
that we want to make use of distributed processing in the form of MAS’s.

Many general and specific resources about agents and MAS’s can be found
on the Internet. We have already mentioned some general references—Russell
and Norvig’s book [RN95], Franklin and Graesser’s paper [FG96], Shoham’s
paper [Sho93], and gave some information about the languages KQML and
KIF ([Fin97b], [LF97], and [Fin97a]). In addition to information about
KQML and KIF, the WWW site at the University of Maryland Baltimore
County contains a rich source of agent-related information. The page about
agent-based information retrieval [Sob| contains pointers to many projects
relevant to this thesis.

Java parsers for KQML and KIF are available on the Internet. The
parser for KQML is contained in the set of Java packages called JATLite
[CDRY7] developed at Stanford University. JATLite is an agent framework
with several layers. The KIF parser JKP [Lua97|, developed in Java by
Xiaocheng Luan at the University of Maryland Baltimore County, is also
used in our demonstration MAS.

Several MAS’s for InIR are being developed: At the University of Mas-
sachusetts, the researchers in the MAS laboratory group (Lesser, Prasad,
Decker, Oates et al. [DLNPW95] [NPLL95] [ONPL94] [Wag]) proposed a
MA model for InIR called cooperative information gathering. The model is
based on the functionally accurate, cooperative (FA/C) paradigm for dis-
tributed problem solving proposed in 1981. Two systems called Search-
bots and MACRON have been built using this paradigm. KQML is used
for inter-agent communication with their specific content language TAEMS
(Task Analysis, Environment Modeling and Simulation).

Borghoff, Pareschi et al. [BPK*96] [ABRS95] are approaching the In-
ternet as “a kind of gigantic world-wide digital library” and propose agent
technology for requirements similar to those of network publication systems.
Their model is based on constraint-based knowledge brokers.

22 CHAPTER 1. INTRODUCTION

Birmingham [Bir95] uses a MAS called the UMDL architecture (the Uni-
versity of Michigan Digital Library project) to satisfy the demands of a digital
library. A KQML-like language is used for the inter-agent communication.

The SIGMA project implemented by Karakoulas [Kar96] is a market
model of a MAS for InIR. The inter-agent language 1s KQML and KAPI
(KQML Application Programmer’s Interface) [KH95] was used to build the

system.

CEMAS (Concept Exchanging Multiple Agent System) by Bleyer [Ble97]
is a MAS based on the Java Agent Template (JAT)—i.e., the agents are
communicating using KQML. The content language is also KQML.

1.6. OVERVIEW OF CHAPTERS 23

1.6 Overview of chapters

Chapter 2 presents the model of NLP that we use. Chapter 3 discusses
the parser generator system NL PAGE (NL Parser Generator). Chapter 4
is about the MA framework MIN. Chapter 5 gives a description of a test
done with the NL PAGE generator and a demonstration MAS based on the
MIN framework that uses the NL PAGE system. Chapter 6 concludes with

summary remarks, open questions, and topics for future work.

Chapter 2

An NLP Model

A full implementation of the MIN approach! would be a large and very
ambitious project. The development of this idea will probably last for years in
parallel and interdependently with other Internet technologies. Its high-level
ideas are so ambitious that, as in most Al areas, it is not clear whether they
can be fulfilled in the foreseeable future. But, we believe that even partial
results can bring useful improvements to practical applications as well as
theoretical foundations if they are developed and analyzed with mathematical
precision.

In this sense, a goal of this work is to contribute, in a bottom-up direction,
to the low-level basis of the MIN approach by building two tools which are to
be used in further research. One tool is the natural language parser generator

NL PAGE and the other is the MA framework MIN.

There is also an MA demonstration system MIN built on the MIN frame-
work and acting as a kind of a small glass-box demonstration system. To
prevent any possible confusion here let us reiterate that the abbreviation
MIN is used to denote three things:

e one is the MIN approach—our general approach to the problem of InIR;

e the second is the MIN framework—the Java [Sun97| framework for

'MIN sounds like “minimal,” which is not an inappropriate coincidence for our toy
MAS, but the whole approach is definitely not minimal.

24

25

building MAS’s; and,

o the third i1s the MIN MAS—a MAS built using the MIN framework.

Like our general orientation, the material presented also follows this
bottom-up direction. We start with the tool for building NL parsers. This
chapter is about the NLP model that is tailored for our approach. The
model is precisely described, making the actual implementation design a
quite straightforward and easy job.

In Section 2.1 we discuss the requirements for our model; Section 2.2 is
about the lexical level of analysis; Section 2.3 is about the syntactic level of
analysis; and Section 2.4 is about the higher levels of NLP.

26 CHAPTER 2. AN NLP MODEL

2.1 Requirements

The requirements of our NLP model are determined by the needs of the
MIN approach. We need NLP at two points: in the user interaction with
the system and in document indexing. These two points dictate two sets of
requirements that are different and quite contradictory. In the former case,
we can have a better understanding system with possibly slower processing,
while in the latter case, the processing has to be fast and parsing correctness
can be less demanding. This does not mean that we need only two types of
NLP procedures. The I-agents are generally equipped with NLP capabilities.
The idea is not to have all of them able to process any kind of text, but to
have each agent handling one kind of text. One of the advantages of the MIN
approach 1s that we can have many specialized I-agents that are limited to
certain domains. If they have rich domain lexicons, for example, then we can
get a high-quality performance and at the same time the processing cost is
reduced. In this way, we are actually doing a kind of parallelized (or we can

call it distributed) NLP.

The problem is how to design so many different parsers having differ-
ent lexicons and, very likely, different grammatical rules. The solution is a
parser generator—a system that can generate various NL parsers given vari-
ous inputs. The input should be easy to manually create and maintain. The
process of designing an NL grammar is demanding enough and has to be
frequently revised so that we want to remove any procedural burden from it.

More about the process of parser generation will be presented in Chap-
ter 3. Here, we are interested in the model that describes the generated
parser. We want the parser to be robust, and efficient in time and space.
This implies the following requirements:

e The model has to be simple, efficient, and “low-level.”

The term “low-level” means close to machine language, which in prac-
tice means easy translation to efficient C code, for example. Handling
all NL phenomena is not an issue of concern here.

e The model will be based on context-free grammar restrictions but we
want to avoid any further restrictions such as LL(k), LR(k), and so on.
The reason why these restricted grammars are not suited for natural

2.1. REQUIREMENTS 27

languages will be briefly explained in Section 2.3 when more formalisms
are introduced.

e The feature mechanism and movement phenomena have to be handled.

They are essential mechanisms in NLP and we will explain them in
Section 2.3.?

2For a more thorough discussion of the feature mechanism and movement phenomena

see [All95].

28 CHAPTER 2. AN NLP MODEL

2.2 Lexical analysis

In the parsing of programming languages, as well as formal languages in gen-
eral, lexical analysis is the first phase during which the input stream is read
and transformed into a list of tokens according to the regular expressions
associated with the token types. This process is well known and well under-
stood and it may seem trivial to accomplish with a natural language—the
tokens are simply words and punctuation marks. However, the situation is
not that simple. The problem with NL’s is that we almost never have an
unambiguous situation. What is a word? Is it [a-zA-Z]*? [?a-zA-Z]T, or
[-’a-zA-Z]*? Most people will agree that ‘semi-colon’ is a word; different
opinions might be found regarding ‘all-in-one’; and a construction such as
the adjective ‘are-you-alive’ in the phrase ‘the are-you-alive message’
1s definitely not handled by humans as a single word. In practice, the situa-
tion gets more complicated because of frequent noise, exceptions, and varia-
tions. Humans are good in understanding these—they are even desirable and
make the reading more relaxing and easier—but machines have a different
taste.

In the MIN context, the lexical analyses done by (QA-agents and I-agents
are different. For (QA-agents, we can define certain conventions that have
to be obeyed by the user. The user is expected to make this minimal effort
for the sake of much better performance. On the other hand, I-agents are
possibly parsing a “who-knows-what” type of gibberish and they are expected
to robustly extract as much of the syntactic structure as possible. It is not
significant if they fail to find some complex sentence parses, for example. In
the I-agent’s NLP it is not even an easy task to determine the end point of
a sentence and we have to take into account the errors that will propagate
from this mistake.

There are three levels of lexical analysis:

1. preediting,

2. tokenization, and

3The notation used for the regular expressions and literal strings is explained in Ap-
pendix B.2.

2.2. LEXICAL ANALYSIS 29

3. part-of-speech tagging.

Preediting is the phase in which the raw array of input characters is pro-
cessed, and its task is to prepare the input for further processing. Preediting
is the interface to the outside world—it can expect anything in the input
stream of characters and its task is to recognize as many elements as possible
converting them to a uniform format manageable by the rest of the system.
We cannot fix many specifics related to preediting since it greatly depends
on the input and, so, mainly relies on heuristics.

For example, the user might type to a QA-agent the following input:
uumGive me ithe latest fivejarticlesy,
in;the newsygroup comp.protocols.tcp-ip.y

and a preeditor* might change it to

Give me the latest five articles in the news group,
"comp.protocols.tcp-ip".

Or, if an I-agent processed the following input:

<HTML>,,
<HEAD><TITLE>([.5]<>"<N.9nURRViqz1>"<>[.5])<(-<>29084466657)
</TITLE></HEAD><BODY bgcolor=#ffffff>,
<center><h1>MultiText,
Netnews Article</h1></center>
<PRE><hr><i>Subject:</i> y ,Re: Number Theory Problem,

it might be preedited to

<HREF> "http://multitext.uwaterloo.ca/" MultiText, Netnews Article.
</HREF>. Subject: "Re:" Number Theory Problem.,

The last output hardly looks like a part of an NL text. Nevertheless, our
parser is expected to handle such constructions. They are much simpler than

“The preeditor is an abstract object performing the preediting phase of analysis. We
will feel free to use this kind of “object-oriented” terminology derivations without further
notices like this one.

30 CHAPTER 2. AN NLP MODEL

NL constructions and can be handled using the same algorithm. Another
thing we want to illustrate is that the preeditor is breaking the input stream
into sentences using the string of two characters ‘. . In the case of I-agent
processing, the preeditor might not be able to find the end of the sentence.
In that case, it will process further until it is pretty sure that the sentence is
contained in the captured string, and it is desirable that the stop point has
a high probability of being the end of a sentence. The syntactic analysis will
then isolatea sentence, if a sentence can be found. In any event, the preeditor
outputs a piece of the input stream and we will call it a sentence. If there is
a possibility of confusion, we will call this sentence the buffer sentence and
proper sentence will denote the “real” NL sentence.

An example algorithm® for the preediting by a QA-agent follows:

Algorithm I: QA Preediting

Input: mput_stream

Output: sentence
1. Read input_stream into sentence until the string ‘g’ 1s read.
2. Remove empty quotations ‘""["]’, and finish a quotation if left open.
(A quotation is delimited by double quotes.)
3. In the following processing of sentence do not touch quotations:
Change all invisible characters into spaces.
9. Make sure that the punctuation marks ,” and *;’, and the quotations

are surrounded by space characters.

-

6. Remove redundant spaces (at the beginning, at the end,
and all strings with more than one space are shrunk to one space).
7. Put in quotes any strings of visible characters which have characters
other than letters, ‘=7, >, ¢,”, ;7 or a dot or colon at its end.
8. Translate the letters into their lowercase counterparts.

We have chosen to have a double new-line finishing a sentence since it
might reduce the number of errors caused by using a dot inside a sentence.
The quotation marks ‘"’ are used to delimit quotations—parts of the sentence
which are to be specially treated. The literal quotation mark is entered

®The algorithm notation is explained in Appendix B.1.

2.2. LEXICAL ANALYSIS 31

‘n nnnd

by doubling it and putting it inside a quotation; e.g., ‘"quote is later

translated to ‘quote'’.

Tokenization is the process of breaking the sentence into units called to-
kens. Tokens are usually words but they may be numbers, URL’s, newsgroup
names, e-mail addresses, etc. This is the process we usually call tokenization
or lexical analysis in the parsing of formal languages. The preeditor makes
sure that the input to this phase obeys certain rules, so it is closer to the
input of formal language parsers.

In the context of formal languages, tokens are the final product of lexical
analysis, but this is not the case here. In our case, the final product of lexical
analysis i1s the lezemes. A lexeme is a sequence of one or more consecutive
tokens. The lexemes, in contrast to the tokens, are ambiguous in the sense
that they can overlap. If two or more lexemes overlap, then only one of them
is correctly found but we do not know which one at this point—the syntactic
analysis must make this decision.

Hence, tokenization can be seen as the process of finding appropriate break
points in the sentence that are considered to be good starting points for later
lexeme recognition. These points are numbered starting from zero—the zero
point is at the beginning of the sentence and the last point is at the end of
the sentence.

For example, if the sentence (the tokenization input) was:
The red river flows into the sea.

then the tokenization output would be _
The red river flows into the sea

As in preediting, the tokenization routine is not generated by NL PAGE
but is independently provided. Continuing the example of the QA-agent
processing that we have started in Algorithm I, we can give a very simple
example of tokenization: Put the break points at the beginning of the sen-
tence, at the end of it, and at all space characters inside the sentence that
are not inside a quotation.

Part-of-speech tagging is the process of finding the categories of the
lexemes—the basic NL units in the linguistic sense—in the sentence. A

32 CHAPTER 2. AN NLP MODEL

lexeme is a part of a sentence that extends from one break point found in
the tokenization to another, so its position in the sentence is determined by
two numbers: its starting and its ending point. If we imagine lexemes as the
blocks covering the sentence from its left to the right end, then at the end of
the process the whole sentence has to be covered by a layer of lexemes—more
precisely, every part of the sentence has to be covered by at least one layer
of lexemes.

Each lexeme is associated with one lezical category such as noun (N),
verb (V), adjective (ADJ), etc. The set of lexical categories is quite stan-
dardized. However, we find it appropriate to change this set arbitrarily to
suit particular needs of the domain. For example, the non-standard cat-
egories URL and E-MAIL seem the most appropriate for lexemes such as
‘http://www.com and ‘who@where’. As we will see in Section 4, a simple
way to capture semantics is by using special categories. There is also a
tradeoff between the usage of features and categories, which can lead to the
introduction of some new categories.

Each lexeme is associated with a certain set of features and their values.
For example, the pronoun ‘I’ has the feature person and its value is first.
Now, using the fact that the verb ‘sings’ does not have the same value of the
feature person, and using the appropriate grammatical rule, we can discard
a sentence like ‘I sings.’.

One of the specifics of our approach is the use of binary features. In
this case, a feature value can be true (+) or false (—). This is a significant
restriction, but considering computer efficiency with bit sets, we can expect
a great 1mprovement in terms of the algorithm time and space complexity.
So, instead of the previous feature person we can have three binary features
pl, p2, and p3; or, if we want to save on the number of features, we can have
only two like plor2 and plors.

There is a global set of features, and for each lexeme and for each feature
it 1s determined what the value of the feature is. It is not clear, for example,
what the value of the feature past tense is for the word ‘I’, but this value is
not important and can be any of the two values, since it will be ignored in
the later processing, anyway.

Following the previous example we continue: If the input to the part of
speech tagging were

2.2. LEXICAL ANALYSIS 33

The red river flows into the sea
then the output could be
The red river flows into the sea

‘ THE | ADJ N \% PREP ‘ THE ‘ N ‘

N

We can see one reason why the multiple lexeme layers are allowed: A
word can have (and frequently does have) more than one possible lexical
category. To see that two overlapping lexemes do not have to have the same
starting and ending points (or positions), consider the following example:

,Common Lisp is the most, common Lisp..

ADJ ‘NAME BE‘THE‘ MOST ADJ ‘ NAME

NAME NAME

In the above examples the lexemes are illustrated in the form of a table.
That table is called the chart and we have just started to build it—a process
that will be continued and finished during the syntactic analysis. Each lexeme
fills one chart entry.

We do the part-of-speech tagging by looking at lezical entries in the
lexicon or by using some procedural means (such as regular expressions).

Here is an example of a part-of-speech tagging algorithm:

Algorithm II: Part-of-speech tagging

Input: sentence

Output: chart partially filled

1. For each starting position sp = 0 to (the last position) — 1 do
2. For each ending position ep = sp 4+ 1 to the last position do
3. For all lexical entries matching the sentence part from sp to ep do
4. ‘Add the lexical entry to the chart.

5. If the string looks like a URL then

6. ‘Add a URL entry to the chart.

7. If the string looks like an e-mail address then

8. ‘Add an EMAIL entry to the chart.

9. If the string from sp to ep is a quotation or

34

10.
11.
12.
13.
14.
15.
16.
17.

CHAPTER 2. AN NLP MODEL

if nothing is found in the lexicon in this iteration then
‘Break the inner loop.
If no entries are found starting from sp then
Add a new entry to the chart starting from sp and ending at ep
If the substring from sp to ep contains spaces then

‘Let the entry have category NAMES.
Else

‘Let the entry have category NAME.

2.3. SYNTACTIC ANALYSIS 35

S
VP
PP
NP NP
/N /\
THE ADJ N v PREP THE N

| | L \ L | |
The red river flows into the sea
Figure 2.1: Parse tree

2.3 Syntactic analysis

The goal of syntactic analysis is to find the syntactic structure of the sentence.
The structure has the form of a tree such as the one given in Figure 2.1.

2.3.1 Context-free grammars

The illustrated tree is a well-known structure in the context of context-free
grammars.® It is called the parse tree of the sentence (also known as the
derivational tree). We will not only use the term parse tree for complete
sentence structures; the trees of the subsentence structures (e.g, the sub-tree
with the root NP in Figure 2.1) are also called parse trees. The leaves of
the tree in Figure 2.1 are marked by the word-category pairs. Actually, the
leaves of our parse tree are the lexemes obtained from the lexical analysis,
and are labelled with their lexical categories. The nodes of the tree that are
not leaves are labelled by the syntactic categories such as NP, S, VP, etc.
It is possible to have categories that are lexical and syntactic at the same
time. We can always avoid this by constructing the grammar accordingly but
there is no serious reason to do so. Furthermore, it provides more flexibility
in the grammar construction. In the text that follows, it may be important
to specify that a category is ezclusively syntactic or exclusively lexical, and
those are the terms that we will use for emphasis. The syntactic categories

A good reference on the subject is [HU79].

36 CHAPTER 2. AN NLP MODEL

are also called the nonterminals, variables, or nonterminal symbols, while
the lexical categories are called the terminals, or terminal symbols. The
categories of both kinds are called the symbols. We will see that in addition
to a category label, more information can be associated with a symbol. In
order to emphasize this, we will sometimes call a symbol a node, even though
1t might not be part of a parse tree.

The main part of a context-free grammar i1s the set of its context-free
rules. From the sample tree in Figure 2.1 we can extract the following rules:

S — NP VP VP — V PP
NP — THE ADJ N PP — PREP NP
NP — THE N

Each rule has a syntactic category on its left-hand side and a sequence of
categories (the constituents) on the right-hand side. The rule X — Y; Y,...
is sometimes called the rule for the nonterminal X. A special rule, called the
empty rule and denoted as A — ¢ for arbitrary nonterminal A, is used to
allow the “disappearance” of a symbol, when looking at the tree in a top-
to-bottom direction. We will not allow the empty rules in our context-free
grammar. Actually, our grammar for NLP is not precisely a context-free
grammar since it has some additional elements, as we will see. We will call
it the NL grammar.

The exclusion of the empty rule is the only restriction, in the context-free
sense, that we put on the NL grammar. Various techniques for the restricted
context-free grammars (such as LL(k) and LR(k) grammars) are developed
for the purposes of formal language parsing. They require the non-ambiguity
of the grammar in the sense that for any sentence there can be at most one
correct parse tree. NL’s are inherently ambiguous, so we cannot directly use
those techniques.

2.3.2 Feature handling

We have introduced features in the previous section. Now, we will explain
how they are handled and how they are used. As do lexical categories, the
syntactic categories have sets of feature values that are determined as the
parse tree is built.

2.3. SYNTACTIC ANALYSIS 37

One problem with the previous example of context-free grammar is that
1t would accept ungrammatical sentences such as:
*The red river flow into the sea.

A straightforward solution is, for example, to have a feature p3sg (third
person, singular), and to propagate it up the tree in a “correct” fashion.
Then, close to the root S, we would have the node NP specifying the feature
value p3sg+, while the node VP would have the value p3sg—. If we insist
that the categories NP and VP have the same value of the feature p3sg when
the rule S — NP VP is applied, then the incorrect parse tree will not be
obtained.

The feature constraints specify how we propagate the feature values up
the tree and they add restrictions that must be satisfied if the appropriate
node is to be added to the tree. We will build the tree in the bottom-up
direction, so when adding a new node, the child nodes are known and the
parent node is added to the tree. This operation is called the reduction.

There are two kinds of feature constraints:

1. Absolute feature constraints

If arule X -+ Y; Y, ...Y, is given, then we can prescribe any feature
value of any category in the rule. If the category in question is the
left-hand side category, then we are assigning the feature value to that
category; otherwise, if it is one of the right-hand side categories, we
are adding a constraint condition, since the feature values of those cat-
egories are already set. If the constraint is not satisfied, the reduction

will fail.

For example,

1. NP - THE ADJ N 0(p3)+

2. NP - A ADJ N 3(n,sg)+

The first rule means that if the respective reduction is to be performed
then the category NP is going to have the feature value p3+. (The
number 0 is assigned to the left-hand side symbol and the right-hand
symbols are enumerated starting from 1.) The second rule states that
the rule can be applied only if the third constituent N has the feature
values n+ and sg+.

2. Equality feature constraints

38 CHAPTER 2. AN NLP MODEL

A feature equality states that two categories have to have the same
value of a certain feature. If one of the categories is the left-hand side
category, then the equality is actually a propagation rule. Otherwise,
it is a constraint condition. For example, in

S — NP VP 1~ 2(p3),

the rule can be applied only if the constituents NP and VP have the
same value of the feature p3. Or, the rule

VP — VPP 0~ 1(past,present)

states that the values of the features past and present of the con-
stituent V are propagated to the category VP.

One rule can have any number of the above constraints. All of them have
to be satisfied for the reduction to be done. In this sense, the rules related
to the right-hand side constituent have to be satisfiable. For example, the
propagation is not just the propagation of a feature value—it is necessary
to check if it conflicts with some other constraints. Obviously, we can also
have contradictory rules, which are unsatisfiable. Those rules are removed
by the parser generator. Besides checking for satisfiability, the generator also
does some of the feature constraint optimizations. More about that will be
considered in the next chapter.

2.3.3 Movement phenomena
Let us consider the following sentence:

What did you put the book in?

Its structure is related to the construct ‘you did put the book in what’,
which is not a grammatical sentence but resembles a known structure of a
declarative sentence. This is called a movement phenomenon since it can
be visualized as a movement of certain components before the parse tree is
constructed, see Figure 2.2. The components that are moved are called fillers
and their final destinations are called gaps.

Of course, we cannot know how to move components in advance—it has
to be done during the course of the tree construction. As we add new nodes
to the tree, we also move constituents around according to certain rules.

2.3. SYNTACTIC ANALYSIS 39

s
VP
NP NP NP PP
PRO . DO PRODO V THE N PREP NP
| |

What did you put tﬁe bobk in?

b

Figure 2.2: Movement in general

The movement can be treated as a special case of feature manipulation: The
components are treated as a special kind of feature and feature unification
1s used to effectively move components. Since we use binary features, this is
not a feasible solution, but a special mechanism needs to be added.

We will enrich the grammar rules so that each rule can provide a way
of moving a constituent. For this to work efficiently, we have to put some
limitations on what we can move and how to do it. However, we believe that
the NL’s can be successfully modelled within these limits.

There are two limitations: Only right-and-down movements are allowed,
and a node can belong to no more than one movement path. To explain what
this actually means, we will introduce a couple of terms using the previous
example. The example in Figure 2.2 is handled in the fashion shown by
the heavy arrows in Figure 2.3. If we redraw the tree in Figure 2.3 as in
Figure 2.4 then it becomes clear what the right-and-down movement means.
We allow movements where the filler is moved to the right to a sibling node
and then passed down the tree. The restriction works, since the movements
in NL are generally done in this way. It would be very unusual to have a
movement to the left or up the tree. The horizontal movement to the right
alone, without affecting the deeper levels of the tree, is not handled. It is
usual in NL’s and it can be easily handled by a special rule. This kind of
movement belongs to a class called the bounded movements, since they are
affecting a bounded number of surrounding nodes. The word “affecting” is
not very precise here—we actually want to say that a movement is bounded

40 CHAPTER 2. AN NLP MODEL

‘ ‘NP :

PRO D‘O;‘ PRO \% THE N PREP
I R I I | N

- What did you pﬂt tﬁe book in? |

NP

Figure 2.3: Movement in our model

S
NPT DO NP VP\
PRO PRO \ /P\ PP
THE N PREP NP
N

What did you put tﬁe bdok iﬁ?

Figure 2.4: Movement to the right and down the tree

2.3. SYNTACTIC ANALYSIS 41

if the length of its movement path (soon to be defined) is bounded. The
more important class is the unbounded movements, where a filler can pass
through many nodes down the tree until it reaches the gap, and we want to
make sure that they are handled properly. The movement of the node DO
in the example is a bounded movement and it is not a problem to deal with
1t without explicitly moving the component.

Actually, the movement of the node DO 1is restricted by the previous
movement and this is the second limitation in our approach. The movement
path is the sequence of nodes that are passed by the filler until it reaches the
gap (denoted by bold arrows in the figures). More precisely, the movement
path consists of the filler node, the node which is both a sibling of the filler
and an ancestor of the gap, and the nodes which are both descendants of
this sibling-ancestor node and the ancestors of the gap. The gap is actually
the same node as the filler, although their positions are different, and it is
included in the movement path.

In our example, the movement path is NP-VP-PP-NP. All nodes in a path,
except the filler, cannot participate in another movement path. Thus, we can
have more movements in a parse tree, but their paths have to be disjoint (the
fillers don’t count). This is purely an implementation limitation—if really
needed, the intersecting paths could be handled, but it is not the case.

The rules which handle movement have the following form:

S — NP DO NP VP(1) (horizontal movement)
VP — V NP *PP (vertical movement)
PP — PREP QNP (final gap)

As we can see, the symbol ‘(n)’ denotes a horizontal movement where

the filler is the mth component, the symbol ‘*’

denotes a right-hand-side
component that is involved in a vertical movement, and the symbol ‘@’ is
used to denote a final gap. We will frequently refer to the last two kinds of
rule (involving the vertical movement and final gap) and we will call them

the gap-rules.

It is usually desirable that these rules work without movement, too. For
this reason the generator, normally, translates each of these rules into more

42 CHAPTER 2. AN NLP MODEL

THE N PREP

| |
What did you put the book in?

Figure 2.5: Actual parse “tree”

than one rule for code generation. However, the grammar maintainer has
control over that process. We consider this issue in the next chapter.

In the actual implementation it is not whole structures that are moved,
only the pointers referring to them. And, fillers are not moved at all. So, the
actual parse tree will have a non-tree structure shown in Figure 2.5. If we
do not track down where the pointers are really referring to, it may appear
to us as a real tree, as shown in Figure 2.6.

2.3.4 Chart parsing

Up to now, we have described the NLP model in implicit, descriptive terms,
giving from time to time hints about how the parsing is actually done. In
the following two subsections the emphasis is on the parsing procedure.

The parsing algorithm is a variant of a well-known algorithm called top-
down chart parsing.”

Let us recall what the result of the lexical analysis is: a partially filled
chart. If we use the same example, then the final output of the syntactic
analysis should be the chart filled as shown in Figure 2.7. The figure also
shows the final parse tree which is implicitly contained in the chart.

Let us see how chart parsing works. The parsing algorithm is a top-down

"More about top-down chart parsing can be found in [A1195].

2.3. SYNTACTIC ANALYSIS

S

7 T~

NP DO NP VP

AN

PRO PRO v /P\ PP
THE N PREP \p

| |
What did you put the book in? _

PRO
\

What

Figure 2.6: ...and a tree again

OThel red i river . flows) into i thee sea.

THE | ADJ N \Y, PREP | THE N

4 AN N Z

NP

Figure 2.7: Chart and a parse tree in it

43

44 CHAPTER 2. AN NLP MODEL

algorithm based on procedures for each syntactic category. If we did not have
the chart, this would lead to the standard ineflicient backtracking algorithm.
Using the chart, all intermediate components that are found are stored and
possibly reused in the later processing. In the figure, we can see some chart
entries (the shaded ones) that are filled with categories but not used in the
final tree.

The reuse of previously parsed nodes is the key idea in chart parsing.
Moreover, the chart is a very appropriate structure for keeping the results of
NL parsing. It can contain more than one parse tree. If a complete parse
tree is not found, then it provides some partial parsing results, which are
available also if complete parse trees are found. The parsing algorithm does
not have to be set up to search only for the complete parse tree—we can use
it to find as many partial components as possible.

Why would we need partial results? One obvious reason is that if a
complete parse tree is not found then anything is probably better than noth-
ing. But a better argument can be stated in the context of InIR. We know
that the I-agents read documents in order to conclude something about their
content; e.g., to do conceptual indexing, semantical matching, etc. For these
purposes the partial parsing results are very useful. For example, if the parser
has found a structure of a large noun phrase, then we know which word is the
head of the phrase; knowing that, an agent can put more emphasis on that
word and less on the other words in the phrase, and formulate a reasonable
guess about semantic content. Or, as in [AAT97], we can make use of the
noun phrase co-occurence hypothesis.

2.3.5 Algorithms

Although the algorithms are presented in detail, the tedious details having
to do with efficiency considerations, such as bit-field manipulations, are ex-
cluded. If interested, the reader may find out more about them from the
direct generator output.

Data structures The output of the lexical analysis is the sentence broken
into tokens at the break points. The break points are numbered starting from

2.3. SYNTACTIC ANALYSIS 45

0 to last_position.® BreakPointEntry is an array whose elements are associated
with the sentence break points. In addition to the information about the
position of the break point, each element of this array contains the following

fields:

e Found symbols (found_symbols)
The information about the symbols found so far starting at this posi-
tion. (The initial values are set in the lexical analysis.)

e Maximal nonterminal position (mp_X)
For each nonterminal X there is a field mp_X that indicates that we
have already tried to parse X from the current position to the maximal
ending position mp_X. (The initial values are 0.)

Chart is a two-dimensional table consisting of last_position 4+ 1 columns
and a certain (large enough) number of rows. Each column corresponds to a
break point. A chart entry is a structure that contains the information about
a node. It contains the following fields:

e Category (cat)
The category of the node.

e Ending position (ep)
The ending position (break point) of the node. (The starting position
is the column number within Chart.)

e Children (ch)
An array of pointers to the children of the node. The lexical nodes do
not have any children.

e Features (f)
The set of feature values for the node.

e Movement slot (gap)
The slot used to keep the pointer to the filler in the movement handling.

8The notation used for data structures and algorithms is described in Appendix B.

46 CHAPTER 2. AN NLP MODEL

The hash table gap_parse_table is used to keep track of the movements in
parsing. Using it, we can check for a given starting position sp, category cat,
and a filler fill, whether we have already tried to parse the category cat from
the position sp with the filler fill, up to which ending position, and whether
1t was successful.

It can be noted that we frequently refer to the maximal ending position.
In particular, when we try to parse a nonterminal, it is done up to a certain
maximal position, which is not always the end of the sentence. Since our
grammar 1s an unconstrained context-free grammar, we need this mechanism
to prevent infinite recursion (e.g., consider the rule NP — NP N). It also
makes the algorithm more efficient. For preventing the infinite recursions
caused by rules such as X — X we also use a sequence of global variables
spX and mep_X defined for each nonterminal X. These keep track of the
current starting and maximal ending position for parsing the nonterminal X.
Their initial values are 0 and last_position + 1.

Parsing is done using the algorithms parseN_X and parseG_X. The
algorithm parseN_X is defined for any nonterminal X for which there is at
least one rule for X that is not a gap-rule (vertical movement or final gap).
The algorithm parseG_X is defined for any nonterminal X for which there
1s at least one gap-rule.

Before presenting the algorithms, we have to keep in mind that the rules
are “cooked” by the generator, so we do not have to worry about issues such
as the feature constraint satisfaction problems in the feature propagation—
we simply propagate the feature values.

Algorithm IIT: parseN_X

Input: sp the starting position
mep the maximal ending position
Output: nd flag indicating whether at least one parse has suc-
ceeded;

(The global variables are always part of the input and output.)
1. ind < No parses; cpos < sp (cpos — current position)
Set the feature values c¢f to the default values for the category X.

b

(¢f — the current feature values for the left-hand side category X)
If sp_ X = sp and mep X = mep then
‘Return ind < No parses, since an infinite recursion loop is detected.

-

2.3. SYNTACTIC ANALYSIS 47

5. Save locally the values of sp_X and mep_X.
6. spX < sp; mep_X < mep

7. Parse according to the first rule X — ...

8. Parse according to the second rule X — ...
9.

10. Restore the values from step 5 of sp_X and mep_X.

11. BreakPointEntry[sp].mp_X < mep

11. If ind = successful then

12. Indicate in BreakPointEntry[sp].symbols_found that
at least one X is found.

13. Return ind

The rules in steps 7-9 are all non-gap-rules (i.e., not involving vertical
movement nor final gap) of the nonterminal X. The following algorithm han-
dles the gap-rules for X and it is quite similar to the previous one at the high
level.

Algorithm IV: parseG_X

Input: sp the starting position
mep the maximal ending position
fill the filler node
Output: nd flag indicating whether at least one parse has suc-
ceeded;

(The global variables are always part of the input and output.)
1.-9. The same steps as in parseN_X.
10. Indicate the results of the parsing in gap_parse_table.
11. Return ind

The last two algorithms look very similar; however, more differences are
hidden deeper in the “Parse according to the rule” steps. Parsing according
to a certain rule is done in the following way:

Algorithm V: Parse according to the rule X -+ Y,; ...Y,

(The input and output are the global variables and the variables in context.)
1. Save locally the value of cf.
2. Update ¢f according to the absolute feature constraints for the symbol X.

48 CHAPTER 2. AN NLP MODEL

3. Process the component Y; and for appropriate nodes ch; do

4. Process the component Y, and for appropriate nodes chy do
5 .

6

... Try to add a new node at the starting position sp, having
the ending position ep = cpos, cat = X, children chq, cho, ...
f = ¢f, and gap = fill if appropriate.

End of the loop for Y,
. End of the loop for Y;
0. Restore the value from step 1 of ¢f.

The algorithm for the loop interations in lines 3-9 and 4-8 (and so on)
in the above algorithm varies depending on whether the component Y; is a
nonterminal or exclusive terminal, whether the parsing includes movement or
not, and on the kind of movement involved. Hence, we derive the following
four algorithms:

Algorithm VI: Loop for an exclusive terminal Y; without movement
(The input and output are the global variables and the variables in context.)

1. If there are categories Y; in the column cpos of Chart
(the field symbols_found is used) then

2. For all entries ch; in the column cpos of Chart such that
ch;.cat =Y; and ch;.ep < mep — rcomp and
the feature constraints are satisfied do
Save locally the values of ¢f and cpos.
Propagate features to ¢f according to the rule.
cpos < ch;.ep

... (body of the loop)

Restore the values from step 3 of ¢f and cpos.

o Tk W

Lines 1-5 constitute the beginning of the loop, corresponding to lines 3
and 4 of Algorithm V, and line 7 is the end, corresponding to lines 8 and 9
of Algorithm V.

The condition ch;.ep < mep — rcomp includes a new value rcomp. The
value is actually a constant—it denotes the number of components in the

2.3. SYNTACTIC ANALYSIS 49

ch;.ep mep

mep - ch.ep

token token token token token token

Figure 2.8: mep — ch;.ep > rcomp

rule on the right side of Y; that are not involved in any kind of movement
(horizontal, vertical, or final gap). To understand this, we can recall that
our grammar does not have any empty rules. If we look at Figure 2.8, we
can see that the condition has to hold since we need a minimum amount of
“space” for the components from the list Y;;;...Y, that are not involved in
movement.

Algorithm VII: Loop for a category Y; that is a gap
(The input and output are the global variables and the variables in context.)
ch; < fill
If ch;.cat =Y, and the feature constraints are satisfied then
Save locally the value of ¢f.

Propagate features to ¢f according to the rule.
... (body of the “loop”)
Restore the value from step 3 of ¢f.

S Tl =

We see that in the last case our “loop” has at most one iteration.

Algorithm VIII: Loop for a nonterminal Y; without movement
(The input and output are the global variables and the variables in context.)
1. If BreakPointEntry[cpos].mp_Y, < mep — rcomp then
2 ‘parseN_Yi(cpos, mep — rcomp)
3. If there are categories Y; in the column cpos of Chart then
4 For all entries ch; in the column cpos of Chart such that

chi.cat = Y; and ch;.ep < mep — rcomp and
the feature constraints are satisfied do
‘Save locally the values of ¢f and cpos.

ot

90 CHAPTER 2. AN NLP MODEL

Propagate features to ¢f according to the rule.
cpos < ch;.ep
... (body of the loop)

Restore the values from step 5 of ¢f and cpos.

© 0N

The following algorithm explains the processing of a nonterminal compo-
nent involved in horizontal or vertical movement. The case when a nonter-
minal is a gap is included in Algorithm VII.

Algorithm IX: Loop for a nonterminal Y; involved in horizontal
or vertical movement

(The input and output are the global variables and the variables in context.)

1. Using gap_parse_table, find the maximal ending position mep_gpt up to

which we have already parsed the category Y; from the position cpos using
the filler fill. If we have not done that kind of parsing then mep_gpt < 0.
2. If mep_gpt < mep — rcomp then
3. ‘parseG_Yi(cpos, mep — rcomp, fill)
4. If there are categories Y; in the column cpos of Chart with
the filler fill then
9. For all entries ch; in the column cpos of Chart such that
chi.cat =Y; and ch;.ep < mep — rcomp and ch;.gap = fill
and the feature constraints are satisfied do
Save locally the values of ¢f and cpos.
Propagate features to ¢f according to the rule.
cpos < ch;.ep
... (body of the loop)

0. Restore the values from step 6 of ¢f and cpos.

2 © oo

Finally, here is the algorithm for step 6 in Algorithm V—adding a new
node to the table. Considering Algorithm V, we notice that the line reads:
“Try to add...” Even though we passed the whole way in constructing a
node, at the end we might not add it to Chart because of a condition that
indicates that the node is already in Chart. This may sound like a symptom
of inefficiency, but if we analyze it in more detail, we easily see that it is not
the case and the other strategy yields a less efficient algorithm, in practice.
At the core of this issue lies the use of the maximal ending position.

2.3. SYNTACTIC ANALYSIS 51

Algorithm X: Try to add a node not involving movement (gap is empty)
(The input and output are the global variables and the variables in context.)
1. If ¢pos > BreakPointEntry[sp].mp_X then

2. Add new entry to Chart in the column sp having the field values
ep < cpos, cat < X, ch « (chy, chg,...), and f < cf.
3. ind < successful

Algorithm XI: Try to add a node involving movement (gap non-empty)
(The input and output are the global variables and the variables in context.)

1. Using gap_parse_table, find out the maximal ending position mep_gpt up to
which we have already parsed the category X from the position sp using
the filler fill. If we haven’t done that kind of parsing then mep_gpt < 0.

2. If cpos > mep_gpt then

3. Add new entry to Chart in the column sp having the field values

ep < cpos, cat < X, ch < (chy, cha,...), f < cf, and gap < fill.
4. ind < successful

52 CHAPTER 2. AN NLP MODEL

2.4 Higher levels of NLP, or how to use the
parser

Semantic and discourse analysis are not handled by the parser and they are
not included in our model. We will present some hints of how they can be
performed using the described underlying model.

The main product of the syntactic analysis is the chart—more precisely, it
is the set of filled entries in the chart. The most usual way of using the parser
is to perform the procedure parseN_S(0,last_position) and after the analysis
is finished to look for the root of the parse tree in the first column of the
chart that has the ending position equal to last_position and category S. In
the best situation, there will be exactly one such parse tree and we can then
use various techniques to use it in the higher levels of NLP. If we get more
parse trees, we can try to choose one. One way to do this is to use stochastic
methods that can be applied after the syntactic analysis 1s finished choosing
the tree with the highest probability. If no parse trees are found, then we can
try to use the partial parsing results. Another option is to change sentence
boundaries and to rerun the parser. A good thing about this approach is
that if we have not changed the global variables, the parser will be able
to reuse the information contained in the chart and get new parses faster.
Rerunning the parser can be used in searching for the syntactic components
in an NL text—we can go backward and forward starting various parseN_X
procedures without a danger of getting repeated structures or overflowing the
memory, i.e. the chart. This can be a base for some robust NLP techniques.

This clear separation between syntax analysis and the higher levels of
NLP has some disadvantages. The semantic and even discourse knowledge
can help us a lot in handling syntactic disambiguation. However, we can
still accomplish this within our approach by using categories and features
that are based on semantics, although syntactically used. For example, if
we are building a (QA-agent for InIR and we recognize that the user will
frequently use queries such as “Find me...,” “Retrieve...,” “I am inter-
ested in...,” “Give me...,” etc. then we can add the lexemes ‘find, me’,
‘retrieve’, ‘i am interested,in’, etc. to the lexicon under a new category
RETRIEVE. Now, we can have a rule such as S —+ RETRIEVE NP. It is
obvious that the category RETRIEVE has a semantic connotation, but the

2.4. HIGHER LEVELS OF NLP, OR HOW TO USE THE PARSER 53

parser does not make any distinction. The lexeme ‘i am interested_in’
seems especially non-standard.

Having this example, we can illustrate another interesting situation: Let
us say that we have developed a grammar without the rule S —+ RETRIEVE
NP that can handle a sentence like ‘I am interested in boats.”. Then, we
decide to introduce the rule with the lexeme RETRIEVE. The parser will
obviously generate at least two complete parse trees for the sentence. So,
we add a new rule to make handling a specific type of sentence easier, and
end up having always at least two parse trees for exactly those sentences. A
way out 1s to give a priority to the parse trees that are based on, or which
simply contain, categories such as RETRIEVE—we may call them keyword
categories.

We have mentioned before that a problem with the I-agents is that they
can encounter very noisy texts where they cannot determine the sentence
boundaries. A solution in such cases could be the following robust algorithm
that largely relies on the concept of partial parsing:

Algorithm XII: An example of the I-agent’s NLP
Input: input_stream

Output: useful knowledge

1. While input_stream not at the end do

2. Read further and do preediting. If the end of a sentence cannot be found
then stop at an appropriate point (e.g., a space) at a sufficient distance
from the starting point and let it be the end of the sentence.

3. Do the tokenization and part-of-speech tagging where not done already.

4. Call sequentially the procedures parseN_X;, parseN _Xs.. .., parseN_X,,
for a list of nonterminals X;, X,,..., X,, determined in advance.

D. Search the first column of the chart for the categories X;, Xs,..., X,
and pick the one with the maximal ending position. If more than one
of them has the same ending position which is maximal, choose
according to a pre-specified criterion.

6. Depending on the category in question, extract some useful knowledge
from the chosen structure.

7. Move in the input_stream to the ending position of the chosen structure.

Chapter 3

NL PAGE: Parser Generator
System

In the previous chapter we have discussed our NLP model and its parsing
strategy. It is simplified in order to be efficient and directly translatable to
low-level machine operations, but it still provides enough expressiveness to
capture the main types of NL constructions.

The approach leads to faster running time and smaller code size in ac-
cordance with our goals. But from the user’s side it is very unsuitable. It is
not hard to code the algorithm, but having to do that for many nonterminals
and many rules would be very tedious and prone to errors. It should not be
considered for any serious application.

This argument should convince us that we really need a parser generator.
Moreover, it is not only that we want to be more convincing in this case
but also because we wish to argue that NL parsing consists of two problems
that should be treated separately, at least in our InIR context. We have two
problems: how should we design an efficient parsing technique applicable to
NL’s, and how should we create and maintain an NL grammar in a previously

defined model?

Once again, let us compare the processing of NL’s and formal languages.
Although we need parser generators, such as lex and yacc, for formal lan-
guages, the problem of creating a parser for a formal language can be man-

o4

)

aged manually. We would have to plan and write down the entire grammar
and lexical rules, and do the coding, and, eventually, we will get a parser.
However, this is not a feasible approach for natural languages. It is better
even not to try to write a grammar that will capture a whole NL. We can cap-
ture only one part of an NL and then we need a lot of experimenting—write
a grammar, try the parser, rewrite the grammar, retry the parser, and so on.
The creation of an NL grammar is more like a free-style artistic activity.

As stated earlier, our MIN approach may need many different NL parsers
and 1t is good to have a tool to produce them easily. We need at least two
parsers—one for a QA-agent and the other for an I-agent. If we want to have
more I-agents specialized in certain domains, then we accordingly need more
parsers. We can have specialized (QA-agents, too.

If we want to deal with various natural languages in the Inl-space then we
need more I-agents that are specialized in certain languages. Our NLP model
18 NL-independent, and so is the parser generator. The needed condition
i1s that the NL in question has to be specified by a context-free grammar
enriched with features and movement handling. Most natural languages, or
at the least European languages, are like that.

Another desirable feature of the generator is support of more target pro-
gramming languages. The current implementation supports two languages—
C and Java. The C language is suitable since it is very portable and appro-
priate for our efficiency considerations. Static agents running on a machine
as server processes could have parsers developed in C. We can use C in
Java applications by adding the NLP capability in the form of native code
methods, but we will lose the Java portability. Java is an especially desir-
able target language in our context of Internet agents. It is very portable,
although less efficient than C. A typical use of a Java parser is within an
applet QA-agent. In particular, we can have a MAS for InIR with the user
interface embedded in an HTML page as an applet QA-agent. If the applets
themselves are capable of NLP, then it would greatly reduce the server load.
When a user types an NL query, the applet can process it, the CPU (Central
Processing Unit) time of the user machine would be spent, and the agents on
the server machines would receive a message in an easily manageable format.

The parser generator could be used by the agents themselves in an inter-
esting way to improve their NLP capabilities. They could rebuild their own

56 CHAPTER 3. NL PAGE: PARSER GENERATOR SYSTEM

NLP modules after learning some new NL rules and lexemes.

Section 3.1 of this chapter presents the structure of the parser generator.
Section 3.2 is about its input—the parse forest. Section 3.3 explains the parse
forest translation to the intermediate representation. Section 3.4 describes
the intermediate representation and the code generation.

3.1. PARSER GENERATOR STRUCTURE

Par se forest

{

Parseforest translation

!

I ntermediate representation

57

Default feature Categories Lexicon Grammar
values processing processing processing processing
Default feature values Categories Lexicon entries Grammar rules

Code generation

/

C output routines

N

Java output routines

NL parser inC

!

NL parser in Java

) s

Figure 3.1: Parser generator flowchart

3.1 Parser generator structure

The structure of the parser generator is shown as the flowchart in Figure 3.1.

The input to the generator has the form of an NL parse forest. The user

lin-

puts the rules, lexical entries, and some other information in the form of a list
of parse trees; i.e., a parse forest. A special parse forest notation, discussed in
the next section, is designed for this purpose. The parse forest is translated

1Within this chapter the user is the designer of the grammar; i.e., the term denotes the
user of the parser generator.

58 CHAPTER 3. NL PAGE: PARSER GENERATOR SYSTEM

into an intermediate representation. The translator is developed in C using
the standard tools lex and yacc. It is a complex process of extracting atomic
items from the parse forest and, after doing certain transformations, out-
putting them in a new, intermediate format. These transformations include
simplification of the syntax rules, checking the constraint satisfiability, the
rule optimization, and the removal of duplicate and other redundant rules.
These “other redundant” rules will be defined later. The result of the parse
forest translation is a set of the three kinds of atomic items: the default
feature value information (dfv-items for short), the lexical entries, and the
syntax rules. Each of them is represented in the form of a line in the inter-
mediate representation format. The lines are sorted and prepared for further
processing.

In the next phase, the atomic items are processed in parallel by four Perl
[Mol97] scripts: the first one extracts the dfv-items, the second extracts the
symbols, the third extracts the lexical entries, and the fourth extracts the
syntax rules. The results of this phase are fed into the code generator.

Finally, the generator builds the parser using a package of output routines
for a target language. There are two packages currently implemented: one is
for C and the other one is for Java. The generator is written in Perl.

3.2. THE PARSE FOREST 99

3.2 The parse forest

A set of parse trees, called the parse forest, is the form of input the creator of
an NL grammar has to provide to the generator. It has a flexible format that
provides various ways to state the syntax rules, to specify the lexemes, and
to define the default feature values for categories. The user (creator of the
NL grammar) is not required to list the terminals, nonterminals, or features.
Many other constants such as the maximal number of children a node can
have, which are needed for efficient parsing but would be just a burden for
the user, are automatically extracted by the generator. The behavior of the
generator is precisely defined and knowing it we can easily adjust the parse
forest, gradually converging to a parser that will suit our needs.

3.2.1 Examples

Before giving the exact syntax rules for the forest (they are actually called
the meta-syntaz rules to avoid confusion with the NL rules), let us show
some example excerpts from the parse forest.

The parse forest can contain comments which are ignored by the parser
but help us to document the forest. There are three types of comments:

1. One-line comments start with the character ‘#’ at the beginning of the
line such as:

Comment line

2. Multiple-line comments (or exclusion of a part of the parse forest) use
the keywords ‘\beginComment’ and ‘\endComment’ at the beginning of
a line:
\beginComment
Comment lines

\endComment

3. The third type of comment is the use of the keyword ‘\end’ at the
beginning of a line. It is a way to exclude the rest of the forest:

60 CHAPTER 3. NL PAGE: PARSER GENERATOR SYSTEM

\end
... (The rest of the forest is ignored.)

The parse trees are entered using a standard notation with parentheses.
For example, the parse tree

(S (NP(PRO He)) (VP (MOD can) (V read)))

is going to be translated into three lexical entries: (‘he’, PRO) (“he” having
the category PRO), (‘can’, MOD), and (‘read’, V); and the three NL rules
S — NP VP, NP — PRO, and VP — MOD V. We don’t have to write the

complete parse trees of a sentence. For example, the following parse trees

(s (nP) (VP)) (PRO he)
would define the rule S — NP VP and the lexical entry (‘he’, PRO), just as

well.

If a lexical entry contains characters other then letters, then it has to be
put in quotes.? For example, the lexical entry (‘World Wide Web’, NAME)
is entered as follows:

(NAME "World Wide Web")

In this way we can enter any string of characters and call it a lexeme. The
literal double-quote character itself is entered by doubling it (as suggested in
the discussion about lexical analysis). Since we don’t make a clear distinction
between lexical and syntactic categories, we can use nonterminals such as NP
as a lexical category. For example,

(S (VP "Enter Keyword(s)") (TO to) (VP Search))

will define two lexical entries ‘Enter Keyword(s)’ and ‘search’ with the cat-
egory VP. This will not confuse the parser if it is already using VP as a
nonterminal category. Sometimes, we do not want to analyze more deeply
the parse tree of a sentence, but we also do not want these long unparsed
lexemes to be added to the lexicon; and still, it 1s good for documentation
purposes to have the complete sentence in the tree. In this case we can use
the following kind of comment:

2 Actually, it can contain the underline character and digits at any position except the
first, but it is never a mistake to use the quotes.

3.2. THE PARSE FOREST 61

(S (VP J Enter keywords) (TO to) (VP) search))

Now, only the rule S — VP TO VP and the lexical entry (‘to’, TO) are
defined.

Features Let us show the notation for the feature constraints by an ex-
ample that involves all four types of constraint (we consider absolute and
equality constraints, and for each of these both the propagation rule and
the “proper” constraint case). Let us say that in the sentence ‘The small
computer works.’, which has the following structure:

(S (NP (THE the) (ADJ small) (N computer)) (VP (V works)))

we want to add some feature constraints so that the following rules are de-

fined:

S — NP VP 1(nom)+ 1~ 2(p3)
NP — THE ADJN 0(pl,p2)— 0(p3)+
VP —»V 0~ 1(p3)

Then, the parse tree for the sentence would be written in the following way:

(S >nom(NP.pil-.p2-.p3+ (THE the) (ADJ small) (N computer))
>=1p3(VP >"p3(V works)))

or

(S >nom(NP.pil-.p2-.p3+ (THE the) (ADJ small) (N computer))
>=1p3(VP >=0p3(V works)))

We also need to assign the feature values for the lexemes. It is done in the
same fashion, for example:

(N.p3.sg.pl- computer)

If the number of features is large, then it can be tedious to list all the
feature values for lexemes or symbols in a parse tree. For this reason we
can define the sets of default feature values for any symbol, so if a feature
of a symbol is not mentioned in a tree, then the default value is assumed.

62 CHAPTER 3. NL PAGE: PARSER GENERATOR SYSTEM

The default feature values are defined using the keyword ‘\default:’ at the
beginning of a line; for example

\default: (PRO.p3sg-.pl-.p2-.sg.nom.gen-)

defines the default feature values for the symbol PRO. We note that the
sign + 1s assumed if no sign is given.

Writing the feature constraints can be laborious and we often want to
experiment with “clean” trees (no features) without bothering to consider the
features until it is necessary to do so. The problem is that if we have a rule
that involves the feature constraints and we repeat it somewhere else without
the feature constraints then the new rule may accept some ungrammatical
constructions, while the first rule will be simply ignored. A solution is found
in the following way: If we have two rules or two lexical entries such that
they are the same except that one has certain feature constraints and the
other one does not have any, then the rule or lexical entry without feature
constraints is called inferior and it i1s discarded by the generator. Let us
emphasize once more that a rule or lexical entry can be inferior only if there
is a corresponding rule containing feature constraints.

Movement phenomena The movement phenomena are handled using
two reserved feature names gap and fgap. We cannot have user-defined fea-
tures with these names. These two words are used syntacticaly in the same
way as features are used, but they are not features. Instead, the generator
will transform them into the movement rules. Let us show how they are
utilized with the example from subsection 2.3.3 with the sentence ‘What did
you put the book in?’. The sentence was parsed as follows

(S (NP (PRO What)) (DO did) (NP (PRO you))
(VP (V put) (NP (THE the) (N book)) (PP (PREP in) (NP))))

assuming that the following movement rules were applied:

S — NP DO NP VP(1) (horizontal movement)
VP — V NP *PP (vertical movement)
PP — PREP @QNP (final gap)

3.2. THE PARSE FOREST 63

In our notation, the movement rules are added to the parse tree in the
following way:

(s (NP (PRO What)) (DO did) (WP (PRO you))
>=1gap.gap(VP (V put) (NP (THE the) (N book))
>"gap(PP (PREP in) >fgap(NP))))

Any rule that includes a movement will normally hold when no movement
occurs. From the previous example, the rule PP — PREP QNP should also
work as the rule PP — PREP NP when the field gap of the node PP is
empty. The generator will produce more rules for the final code genera-
tion. Sometimes, however, we do not want that and this is facilitated by the
feature-like usage of symbol gap. By setting the value of the “feature” gap,
we decide whether the corresponding component has to be involved® in move-
ment (gap+) or not (gap—). If we take a look at the previous example, we
can see that in the rule S — NP DO NP VP(1) we force horizontal move-
ment, i.e. the rule cannot be applied unless the first component NP is moved
to the last component VP (and down the tree). The string ‘=1gap’ denotes
the horizontal movement, and the string ‘.gap’ denotes that the movement
is required.

3.2.2 Formal specification

In this subsection we will define precisely the format of the parse forest.
The description is divided into two parts—the first part is about the lexical
structure of the parse forest and the second is about its syntactic structure.
The use of these meta-lexical and meta-syntax rules should not be confused
with the lexical entries and rules concerning the natural language. In this
case we are only dealing with a formal language. To prevent confusion, we
will sometimes emphasize that a term in question is a meta-term or an NL
term depending on whether it is a part of the formal specification of the parse
forest, or a part of the NL grammar that is defined by the parse forest.

3Precisely, a node is involved in movement if it is a part of a movement path and it is
not the filler nor the gap in it.

64 CHAPTER 3. NL PAGE: PARSER GENERATOR SYSTEM

Meta-lexical rules The meta-lexical rules are defined using regular ex-
pressions. At times, the rules might seem to be ambiguous, but this is not
the case, since we adopt the convention that the longest matching meta-
lexeme (token) is chosen, and if there are others then the one matching the
first specification in the following list is chosen. The rules are used as the
input to the program lex, which produces the lexical analyser.

1. The invisible characters , (space), m (tab), and o (new-line) are ac-
cepted and no action is taken, i.e. they are ignored. Their only possible
function is to separate other tokens.

2. The characters (,), =, ., >, =, +, and - are recognized as separate
lexemes.

3. The regular expression [a—zA-Z_|[a—zA-Z0-9_|* specifies the lexeme WORD.

4. NUMBER is represented by [0-9]T.

. =k \ T . .
5. STRING is represented by ("["] ") . As we can see, a string is de-
limited by double-quote characters. Double-quote characters can occur
inside a string and they have to be doubled in order to avoid ambiguity.

E.g. "string ,""abc is a valid string. It is transformed internally

into string "abc" after being recognized.
Tabs and new-lines found in a STRING are transformed into spaces.

6. DEFAULT is a keyword token recognized using the regular pattern
F\default:.*

Certain parts of the parse forest can be excluded from processing (com-
mented out). These parts are ignored during the lexical processing. We
have seen in the previous examples that we have four ways to do this:

7. By the string \end at the beginning of a line. A comment of this type
is recognized using the regular pattern F\end|[] .

“The notation used for regular expressions and patterns is explained in Appendix B.

3.2. THE PARSE FOREST 65

8. By enclosing the comment between the strings \beginComment and
\endComment. More precisely, this type of comment is recognized by

e

the pattern F\beginComment[y] ([\]] ,ﬂ)* \endComment.

9. By starting a line with #. This is a typical line comment, which is
matched by F#[y] w-

10. Using the character %. The comment finishes at the end of the line
or at the first right paranthesis); i.e., it is recognized by the regular

expression U g] -

Meta-syntax rules The meta-syntax rules form an LR (1) grammar. The
tool yacc is used to build the parser for the parse forest translation. The list
of rules with explanations follow:

1. forest — ¢
forest — forest NUMBER tree
forest — forest tree

forest — forest DEFAULT (WORD featurelist)

The meta-symbol forest is the start symbol. As we can see, the parse
forest is a list of parse trees that are matched by the symbol tree. The
number that can optionally precede a tree can be later used to identify
the tree from which an NL rule is derived. The last rule describes the

notation for the definition of the dfv-items.

2. tree — (WORD featurelist ftree ftrees)
tree — (WORD featurelist WORD)
tree = (WORD featurelist STRING)
tree — (WORD)

These are the rules that describe the meta-syntax of a parse tree. The
first rule defines the meta-syntax of an NL syntax rule, the next two
rules define the meta-syntax of the lexical entries, and the last rule
describes the empty tree such as ‘(NP)’.

3. ftree — tree
ftree — > featurelistl tree

66

CHAPTER 3. NL PAGE: PARSER GENERATOR SYSTEM

The meta-nonterminal ftree represents a tree with features. This type
of tree is always seen as a subtree. A tree with features is actually
a tree that can optionally be preceded by a list of feature constraints
(featurelistl) that are part of the surrounding rule.

There is also the meta-nonterminal featurelist, which is also a list of fea-
ture constraints but placed on a different point and subject to different
rules.

. ftrees — ¢

ftrees — ftrees ftree

The meta-nonterminal ftrees represents a list (possibly empty) of ftrees,
1.e. trees with features. This is a right-recursive list definition. It is used
to specify the list of rule components in an NL node.

. featurelist — ¢

featurelist — featurelist . WORD
featurelist — featurelist . WORD +
featurelist — featurelist . WORD -

The meta-nonterminal featurelist is the list of absolute feature con-
straints related to the left-hand side nonterminal of an NL rule or to
a lexical entry, e.g., in (NP.p3 (N)) and (PRO.pl we) the parts ‘.p3’
and ‘.pl’ are examples of the featurelist’s.

. featurelistl] — ¢

featurelistl] — WORD +

featurelistl — WORD -

featurelistl — featurelistl . WORD
featurelistl — featurelistl . WORD +
featurelistl — featurelistl . WORD -
featurelistl — featurelistl =~ WORD
featurelistl] — featurelistl = NUMBER WORD

This is the second type of list of the feature constraints. These con-
straints are related to the right-hand side components of the NL rules,
like ‘nom =2p1’ in (S >nom =2p1(NP) (VP)).

3.3. PARSE FOREST TRANSLATION 67

3.3 Parse forest translation

Most of the processing in the parser generation is done in this module. It
bridges the gap between the user input forest, which can be written in various
ways, and the format needed by the code generation routines, which has to
be optimized and checked for consistency if we want to obtain a correct and
efficient parser.

The translation process is a mapping of the nodes in the parse forest into
the atomic items—the syntax rules of the NL grammar, the lexical entries,
and the dfv-items. Whenever the translator reads the character ‘)’ (if it is
not in a quotation or a comment), marking the end of a node, an atomic
item 1s extracted.

Data structure During the translation, the following data structure is
used to keep track of the known information about an item:

o Left-hand side category (lrule)
Used to keep the left-hand side category of a rule, the category of a
lexical entry, or the category of a dfv-item. (Example: X)

e Right-hand side components (rrule)
This is the list of right-hand side categories of a rule. In the case of a
lexical entry or a dfv-item this field is not used. (Example: Y,,Z)

e Positive absolute feature constraints (setT)
This is the list of lists of positive (+) absolute feature constraints. In
the case of a lexical entry or a dfv-item, there can be at most one list
in the field. (Example: 0(a,b) 1 (a,c)...)

e Negative absolute feature constraints (setF')
This is the list of lists of negative (—) absolute feature constraints. In
the case of a lexical entry or a dfv-item there can be at most one list
in the field. (Example: 0(d)-,3(c)-...)

e Equality feature constraints (equal)
This is the list of lists of equality feature constraints. The field is not
used in the case of a lexical entry or a dfv-item. (Example: 1=2(d)...)

68

CHAPTER 3. NL PAGE: PARSER GENERATOR SYSTEM

e Horizontal movement information (htgap)

This is the list of horizontal movements. The field is not used in the
case of a lexical entry or a dfv-item. (Example: 1=>2,,...)

Vertical movement information (vtgap)

This is the list of component numbers that vertically receive a filler
from the parent node. Usually, there is no more than one number in
this list. The field is not used in the case of a lexical entry or a dfv-item.
(Example: 2,,3...)

Final gap information (fgap)

Similar to the previous field, this is a list of component numbers that
are final gaps if the parent node participates in a movement path. The
field is not used in lexical entry or dfv-item processing. Usually, we do
not have more than one final gap in a rule. (Example: 3,,...)

Algorithms When the information about an item is collected in the above
structure, before outputting the item, the translator performs satisfiability
checking and optimization. The following algorithm is performed when deal-
ing with a lexical entry or a dfv-item:

Algorithm XIII: Check lexical entry or dfv-item

Input: item data structure
Output: error or OK Is the item satisfiable?

1
2
3
4.
9.
6
7
8

(the structure can be changed)

Remove duplicate features in setT and setF
For each feature f in setT do

If f contained in setF' then
‘Return error

For each feature f in setF do

If f contained in setT then
‘Return error

Return OK

If the consistency check is passed, an item entry is generated at the out-
put.

3.3. PARSE FOREST TRANSLATION 69

When a rule is generated, the satisfiability conditions get more compli-
cated. As we can see from the following algorithm, when a rule is prepared
the translator can output up to eight rules for the code generation.

Algorithm XIV: Check and output the rule

Input: T the rule data structure

Output: error or OK Is the rule satisfiable?
(up to eight output rules)

1. Check the general rule satisfiability of the rule r.

2. If test failed then Return error

3. rl + r; Remove r!.htgap, r1.vtgap, and r1.fgap

4. Check the specific rule satisfiability of r!

5. If test passed then Output r!

6. If r.htgap is non-empty then

7. rl < r; Remove r!.vtgap and rI.fgap

8. Check the specific rule satisfiability of r!

9. If test passed then Output rI

10. If r.vtgap is non-empty then

11. rl < r; Remove r1.htgap and r1.fgap

12. Check the specific rule satisfiability of 7!

13. If test passed then Output rI

14. If r.vtgap is non-empty and r.htgap is non-empty then
15. rl < r; Remove r1.fgap

16. Check the specific rule satisfiability of 7!

17. If test passed then Output rI

18. If r.fgap 1s non-empty then

19. rl < r; Remove r1.htgap and r1.vtgap

20. Check the specific rule satisfiability of r!

21. If test passed then Output rI

22. If r.htgap is non-empty and r.fgap is non-empty then
23. rl < r; Remove r!.vtgap

24. Check the specific rule satisfiability of r!

25. If test passed then Output rI

26. If r.vtgap 1s non-empty and r.fgap is non-empty then
27. rl < r; Remove r1.htgap

28. Check the specific rule satisfiability of r!

29. If test passed then Output rI

70 CHAPTER 3. NL PAGE: PARSER GENERATOR SYSTEM

30. If r.htgap, r.vtgap, and r.fgap are non-empty then
31. Check the specific rule satisfiability of r

33. If test passed then Output r

34. If no rules are output then Return error

35. Else Return OK

Algorithm XV: Check the general satisfiability of a rule
Input: T the rule
Output: error or OK Is the rule satisfiable?

(the rule can be changed)
1. Check that the component numbers are in the range
0...number_of components and do not refer to the component
they are associated with.
If check failed then Return error
Check for contradictory htgap’s (e.g., 1=>4 2=>4)
If a contradiction is found then Return error

G W

Simplify the rule by applying the equalities (e.g. 1 ~ 2(a) and 1(a)—
implies 2(a)—).

6. Check for conflicting absolute feature constraints (e.g., 2(a) and 2(a)— is

a contradiction).

7. If a contradiction is found then Return error

8. Transform the equalities of the form 0 ~ i(f) and 0 ~ j(f) to
0~ i(f) and ¢ ~ j(f). (needed in later optimization)

9. Return OK

Algorithm XVI: Check the specific satisfiability of a rule
Input: T the rule
Output: error or OK Is the rule satisfiable?

(the rule can be changed)
Check for conflicts htgap vs. vtgap (e.g., 1=>4 and vtgap:4).
Check for conflicts htgap vs. fgap.
Check for conflicts vtgap vs. fgap.

- =

Simplify the rule by applying the equalities (e.g. 1 ~ 2(a) and 1(a)—
implies 2(a)—).
5. Find conflicting absolute feature constraints (e.g., 2(a) and 2(a)— is

3.3. PARSE FOREST TRANSLATION 71

a contradiction).
6. If all tests are passed then Return OK
7. Else Return error

Steps 4 and 5 are repeated in the specific satisfiability checking, since the
pseudo-features gap and fgap change values when the specific output rules
are formed.

72 CHAPTER 3. NL PAGE: PARSER GENERATOR SYSTEM

3.4 Intermediate format and code generation

The direct output of the translator is the dfv-items, lexical entries, and syntax
rules in the intermediate format, which is a readable textual format. Here
we have several examples:

1. dfv-items:
[D:ART:1] ART 0(sg)
[D:N:1] N 0(sg,p3sg,nom,gen) 0(pl,p2)-

[D:NP:1] NP 0(sg,p3sg,nom,gen) 0(pl,p2)-
2. lexical entries:

[L:a :ART:1] gt ART 0(sg)
[L:am :V:1] "am" v 0(be,pl,sg) O(base)-
[L:am!Onot :V:1] "am not" V 0(be,pl,sg) O(base,pn)-

3. syntax rules:

[G:ADJL:1:ADJ ADJL:0] ADJL -> ADJ ADJL

[G:NP:1:ART N:1] NP -> ART N=0:p3sg,sg=1:sg
[G:S:2:PP MOD NP1 VP:1] S -> PP+wh MOD NP1 VP<1>+base
[G:S:2:PP 5:0] S -> PP S<1>

[G:S:3:NP1 *VP:1] S -> NP1+p3sg *VP+s-be

Each item is written on a line. The first part, which is delimited by
brackets, is a key field used in sorting and removing duplicate and inferior
items. The key field is removed afterwards, since it includes only redundant
information.

The intermediate format itself can be an interesting result. For example,
it explicitly presents the grammar induced by the parse forest.

Since this format obeys precise and strict rules, it can be handled using
regular expressions, so further processing is implemented in Perl. Relying on
the algorithms presented in Chapter 2, it 1s a quite straightforward process to
transform the intermediate format into the final parser. The code generation
1s structured so that the final generation phase uses the output routines
specific to a programming language. The routines are based on code snippets
for the language in question. Two routine packages are developed—for C and
for Java—to produce parsers in those two programming languages.

Chapter 4

Framework of MIN

In Chapter 1, we introduced the general structure of a MAS for InIR which
consists of four types of agents: Q/A-agent, T-agent, I-agent, and L-agent.
A Q/A-agent gets the query from the user, translates it into an inter-agent
format and sends it to a T-agent. The T-agent can develop a high-level plan
for solving the query, it can break it into sub-queries, and, generally, since it
knows a lot about other agents, it can decide whom to send the query or sub-
queries to. The sub-queries then reach various I-agents. An I-agent knows a
lot about a certain domain and it can make the final plan and translate it
into the low-level actions. Some of these actions might be done internally and
others are realized using the L-agents. The L-agents are the “fingers” of the
system. They get in touch with Internet resources, and they are the inter-
faces that translate the inter-agent language to the resource-specific language
and vice versa. Then, information flows in the opposite direction—from L-
agents to [-agents, which can do some intermediate processing, information
extraction, or caching. The I-agents send the answers to the T-agent, which
can do the fusion of several answers if obtained from several agents. The
final results reach the QQ/A-agent, which decides how to present them to the
user.

Some characteristics of these agent types are given in quite vague terms.
Although it is relatively clear what is expected from an L-agent and a Q/A-
agent, the functionalities of the T-agents and I-agents are definitely not
pinned down. A more precise specification of the T-agent and the I-agent ac-

73

74 CHAPTER 4. FRAMEWORK OF MIN

tivities would bring in many difficult issues such as the problems of planning
and agent coordination. In the context of the MIN approach, these problems
have to be addressed but we are not going to deal with them now. Instead,
we will pack all these high-level problems into two boxes called the virtual
knowledge base (VKB) and the virtual control module (VCM) of an agent and
concentrate on the remaining issues. Elementary examples of these modules
are implemented in the demonstration system.

The MIN framework at this stage is concerned about the questions of
communication issues. It is implemented as a Java package that may be

used to build the MAS’s.

Before proceeding, let us explain and define some of the terms that will be
used. We have already mentioned the agent VKB (Virtual Knowledge Base)
and VCM (Virtual Control Module). Neither of these two modules is a real
individual module. VKB is an abstraction of the agent’s knowledge, which
can be stored in any internal form-—simple data items, database relations,
inference rules, and so on. The agent can change its VKB. On the other
hand, its VCM cannot be changed and it is an abstraction of the agent’s
built-in algorithms.

We deal with software agents, and it is usually clear when such an agent
begins and ends—these are the program or process boundaries, which are
well defined in an operating system or similar environment. We will say
that an agent 1s born if 1t begins with a clear VKB; i.e., its VKB does not
and cannot contain any changes made by the agent itself before this startup.
Otherwise, we will say that the agent wakes up. If an agent ends in such a
way that its next beginning will be a birth then we say that the agent dies,
otherwise we say that it goes to sleep.

The last two definitions could be expressed in more simple terms, but
they would be less precise; although, if we analyze them in detail, we can
still find some controversial situations (e.g., does an agent kill itself or does
it simply forget everything?). However, we will not have these problems in
our discussion.

When discussing inter-agent communication we will usually analyze it
from the viewpoint of one agent, usually denoted by the phrase this agent.
The other agents will be denoted by the term other agents. It also applies

75

to the situation where this agent communicates to one other agent. If this
agent knows about an other agent (typically, knows about its name, its type,
and how to contact it) then we say that the other agent is a known agent,
otherwise it is an wunknown agent, or a foreign agent. If an agent accepts
connections from foreign agents, turning them into known agents, then we
say that it i1s an open agent, otherwise it is a closed agent.

Section 4.1 introduces questions concerning inter-agent communication.
Section 4.2 describes the MIN communication layers and gives specifications
of the associated protocols. Section 4.3 presents the structures of the agent
communication modules used in inter-agent communication. Section 4.4 de-
scribes the general structure of the four InIR agent types.

76 CHAPTER 4. FRAMEWORK OF MIN

Ak‘éMI'_r/KH‘:‘.'. C

Multitext database

Figure 4.1: Example communication net

4.1 Communication issues

If we want to analyze a MAS, then the first sub-system to be considered is
the communication infrastructure. MAS’s are sometimes called MA (multi-
agent) architectures and when we talk about an architecture here, we have in
mind the topology and functionality of the links that interconnect the agents.
There are different types of communication in a MAS—communication among
agents, communication with humans, and communication with the environ-
ment.

Figure 4.1 shows an example situation in our envisioned MA approach.
The communication links illustrated in the figure should not be regarded
as some sort of static, long-lasting communication; instead, they show what
links are activated in resolving an InIR query and what language is used in
each of them.

The user interaction with the Q/A-agent is performed in a natural lan-
guage. It is an important characteristic of our approach, but we do not
exclude the use of other forms of user interfaces. They can be integrated
with NL communication and, besides, the I-agent’s NLP activity is more
crucial. Ideally, we want to build open MA systems so the appropriate inter-
agent language is the KQML/KIF combination. This seems to be the closest
to the actual standard and that is why we have chosen it. The L-agents
know resource-specific communication forms—that is their main purpose in

4.1. COMMUNICATION ISSUES (s

a MAS. The Multitext database and its query language GCL [CB] will be

our ongoing examples of a resource and its communication language.

NL and resource-specific communications are parts of specific Q/A-agents
and L-agents and the discussions about them belong to the descriptions of
those agents. A more general issue is concerns the management of inter-agent
communication and our focus is here more on that.

KQML and KIF We introduced KQML and KIF in Chapter 1. KQML
1s an inter-agent language that provides a message format in which an agent
can pass some information to other agents presenting its attitude towards
that information, such as querying or stating. A KQML message is called the
performative because it 1s “intended to perform some action by virtue of being
sent” [LF97]. The information contained in a message is embedded in a field
that is called the content field and it is expressed in another language, called
the content language (although we can use KQML again). The knowledge
representation language KIF is the content language that we will use.

The KQML specification does not include the lower transport layer be-
cause it is considered too implementation specific. For the purposes of the
MIN approach, one such layer is developed as a part of the MIN framework.
Besides being a bridge from the lower TCP layer to the higher KQML/KIF
communication level, the new layer is concerned with timing and efficiency
considerations important in InIR. A user who searches the Internet usually
wants fast results. The protocols we rely on, such as TCP, have already
inherent time delays and we do not want to increase them much more.!
Alternatively, we cannot keep all inter-agent connections open all the time
because that will not scale well with the increasing number of agents that we

want to inter-communicate.

Both languages KQML and KIF have Lisp-like syntaxes. Since the MIN
framework at this stage does not give a clear model higher than the KQML/KIF
level, we will not explain their syntax in a systematic manner. Instead, some
messages are illustrated in the following examples, which are very readable
and self-explanatory.

1The abbreviation WWW has already got a new popular expansion—World Wide Wait.

78 CHAPTER 4. FRAMEWORK OF MIN

Example of a session Before going into the description of the MIN frame-
work, let us give an example of a session of a simple MIN MAS. The example
illustrates what features are expected from the framework communication
model.

1. The user, using a WWW browser from the Internet host user.host,
opens a URL that is an interface to the MAS and gets a page with an
applet that is actually a Q/A-agent.

2. The Q/A-agent is created and it invokes a CGI (Common Gateway
Interface) script at the server machine that wakes up a T-agent TA, an
I-agent TA-1, and an L-agent LA-1, if they are not awake already. The
script returns the server port number of TA to the Q/A-agent (let us
say 3469).

By the server port number, we mean the socket number at which an
agent listens for an incoming connection.

3. TA wakes up and listens to the TCP port 3469 at the host ta.host.

4. The Q/A-agent contacts TA and gets a unique name QA-1. QA-1
registers with TA using the KQML performative:

(register :sender QA-1 :receiver TA :language KIF
:ontology min-ontology
:content (agent-info QA-1 QA user.host 0))

The relation agent-info contains the following four components: the
agent name, the agent type, the host name, and the server port number.
In the case of QA-1, the server port number is 0 since it, as an applet,
cannot open a server port. For security reasons, the applets run in a
restricted environment and one of the restrictions is inability to open
a server TCP socket.

TA registers QA-1 in its virtual knowledge base.
5. The I-agent IA-1 wakes up knowing the host name and the server port

number of the TA-agent from the start. It registers with TA in a way
similar to QA-1 (although it does not have to get a unique name).

4.1.

10.
11.

COMMUNICATION ISSUES 79

The L-agent LA-1 wakes up and registers with TA in the way same as
TA-1.

TA informs IA-1 and LA-1 about each other by sending the following
KQML performatives:

(register-agent :sender TA :receiver IA-1 :language KIF
:ontology min-ontology
:content (agent-info LA-1 LA la.host 3472))

and

(register-agent :sender TA :receiver LA-1 :language KIF
:ontology min-ontology
:content (agent-info IA-1 IA ia.host 2743))

At this point, the MAS is operational and ready to accept the user’s
queries.

The user communicates the following query to QA:

Find me the number of articles containing the words java,
lex, and yacc in the subject line.

The query is transformed by QA into the KQML/KIF format and

passed to TA in the form of a performative:

(ask-one :sender QA-1 :receiver TA :reply-with TA.1
:language KIF :ontology min-ontology
:content (length (keywords-and subject java lex yacc)))

TA passes the query to TA-1.

TA-1 asks LA-1 to send all articles containing the words java, lex, and
yacc in the subject line by sending the performative:

(stream-all :sender IA-1 :receiver LA-1 :reply-with LA-1.1
:language KIF :ontology min-ontology
:content (keywords-and subject java lex yacc))

80

12.

13.

14.

15.

16.
17.

CHAPTER 4. FRAMEWORK OF MIN

LA-1 translates the query into GCL and sends it to the Multitext search
engine. The GCL query is:

("java" " "lex" " "yacc") < Subject

The Multitext engine sends the results (actually, one result article) to

LA-1 in the HTML format:

<HTML>
<HEAD><TITLE>("java"""lex" " "yacc")<subject</TITLE>

</HEAD><BODY bgcolor=#ffffff>

LA-1 translates the result into this performative:

(tell :sender LA-1 :receiver IA-1 :in-reply-to LA-1.1
:language KIF :ontology min-ontology

:content (article-outline
"Re: LEX & YACC for Java'
"A. Name <AName@a.host.net>"
"comp.lang. java.programmer"

29))

An article outline consists of its subject line, sender name, newsgroup
name, and number of lines. If there were more results, more results
would be sent. The end of the stream is notified by sending the perfor-
mative eos:

(eos :sender LA-1 :receiver IA-1 :in-reply-to LA-1.1)

TA-1 simply counts the hits and, upon receiving performative eos, sends
the answer to TA:

(tell :sender IA-1 :receiver TA :in-reply-to IA-1.1
:language KIF :ontology min-ontology
:content 1)

TA passes the answer to QA.

QA prints the answer to the user:

4.1.

18.

19.

COMMUNICATION ISSUES 81

1 article.

When the user wants to finish the session, (s)he types Bye. to QA and
QA dies.

The other agents TA, IA-1, and LA-1 go to sleep after the timeout time
has elapsed if they do not have to serve any other QA agent.

82 CHAPTER 4. FRAMEWORK OF MIN

4.2 MIN communication layers

The communication part of the MIN framework consists of several layers,
which will be specified in this section. They are based on the TCP layer
accessed using the Java socket class. The sub-layers are:

e the agent socket layer (AS),

e the message exchange layer (Comm, Communicator layer), and

e the KQML/KIF layer (KK).

In an inter-agent connection of two agents, the connection is always ini-
tiated by one agent and for that agent the connection is outgoing while for
the other it is incoming. However, at the level of messages, each message
i1s incoming or outgoing depending on whether an agent is receiving it or
sending it.

In the following subsections, we describe each of the three layers and
specify the associated protocols.

4.2.1 Agent socket layer (AS)

The agent socket layer provides a uniform interface to the underlying layer,
which 1s the TCP layer. The Java programming language changes slightly
from version to version and this layer is the interface that absorbs the changes
in the network package. It also provides an abstraction with several basic
operations needed for the upper layers.

The actual data transfer is described by the AS protocol, which is com-
posed of the following operations:

AS-Open This is the initial phase of the incoming and outgoing connections.
The sockets are opened and no communication is done. AS-Open-In
and AS-Open-Out denote the incoming and outgoing parts of the
protocol.

4.2. MIN COMMUNICATION LAYERS 83

AS-Send A line is sent. The line is a string of non-new-line characters
terminated by a new-line character.

AS-Receive A line is received. On an empty line or a line that starts with
the string ‘abort:’ the connection is closed and an error is reported.
The new-line character at the end of line is stripped.

AS-Signal A line is sent and the output is flushed. This is used by the
higher-level protocols to send a signal message that affects the commu-
nication.

AS-Abort A line starting with ‘abort:’ and containing a message is sent
and flushed, and the connection is closed.

AS-Close The output is flushed and the connection is closed.

4.2.2 Message exchange layer (Comm)

The message exchange layer defines how two agents exchange messages. It
is based on the agent socket layer. This layer solves the problem of how to
effectively send a set of KQML/KIF messages to another agent and how to
accept the messages coming in the opposite direction. The agents can work
in parallel on several independent tasks, and the messages from one task or
another are not distinguished at this layer.

The following are the issues we deal with at this layer:
e mapping the known agent names to the actual physical addresses,

e the actual message exchange, i.e. taking turns in sending and receiving
messages,

e taking care that this agent, when it is an applet agent (typically QA),
receives messages although it is not allowed to open a server port,

e generating unique reply-with labels,

e taking care that the connection is open for a while if some reply mes-
sages are expected,

84

CHAPTER 4. FRAMEWORK OF MIN

checking that important known agents are awake (typically TA),

performing a rudimentary security verification—when an incoming call
from a known agent is accepted, the calling IP number is verified.

resolving collisions when the other agent is trying to connect to this
agent at the same time as this agent is trying to connect to the other
agent.

The following four parameters affect the connection at the Comm level:

o 1sOpen

If the agent is open, then it can accept calls from foreign agents, oth-
erwise it cannot.

1sApplet

If the agent is an applet, then it cannot open a server socket. In order
to ensure reception of incoming messages, it must periodically open the
connection even if there are no messages to be sent.

s Vital
If the connection is vital, it needs to be checked periodically. If the
other agent is not awake, then this agent goes to sleep.

1sErpecting
If this agent is expecting a reply, then the connection is kept open for
a longer time even if no messages are exchanged.

The Comm layer is asynchronous with the upper layer. The upper layer

sends a message by putting it into the output buffer and does not wait for i1t

to be sent. When receiving a message, it checks the input buffer to get the
message.

The communication at this layer is described by the Comm protocol,

which consists of the following phases:

Comm-Open-In A call is received from the other agent. It is managed

through several sub-phases:

4.2. MIN COMMUNICATION LAYERS 85

Comm-Open-In-1 A socket is accepted (AS-Open-In).

Comm-Open-In-2 A line is received, which is supposed to be the
name of the other agent (AS-Receive).

We have four options depending on the value of the parameter
isOpen and on whether the received agent name starts with a ‘?'—
which means that the other agent expects to be given a unique
name. We will call this kind of name ?-name. Otherwise, we will
say that the name is normal. The options are:

1. This agent is closed and the name is normal.
If the other agent is known, then proceed, otherwise abort the
connection (AS-Abort).

2. This agent is closed and the name i1s a ?-name.

Abort the connection (AS-Abort).

3. This agent is open and the name is normal.
If the other agent is known, then proceed, otherwise, register
a new agent and proceed.

4. This agent is open and the name is a 7-name.
The question mark at the beginning of the name is removed
and, by appending a number to the rest of the name, a new
unique name is created. The name is sent back (AS-Signal).
A line is received (AS-Receive) and if it contains the same
name that was sent, then proceed, otherwise abort (AS-Abort).

Comm-Open-In-3 Check whether this agent is trying to connect to
the other agent at the same time. If the collision is detected,
send the signal ‘cancel’ (AS-Signal) and close the connection (AS-
Close), otherwise proceed.

Comm-Open-In-4 Signal ‘ok’ (AS-Signal) and proceed.

Comm-Open-Out The call is made by this agent.
Open the connection (AS-Open).
Send this agent’s name (AS-Signal).

Receive a line (AS-Receive). If ‘cancel’ is received then close the
connection (AS-Close) because a collision is detected. The connection is
retried to open after a pause. The pause time is doubled each time and
a random variation is added in order to avoid synchronous collisions.

86 CHAPTER 4. FRAMEWORK OF MIN

If this agent’s name i1s a 7-name, then the received line is a new name.
Accept it, send it back (AS-Signal), and receive a line (AS-Receive).

If the last received line is ‘ok’ then proceed, otherwise abort the con-

nection (AS-Abort).

Comm-Exchange This phase handles the actual exchange of messages.
The exchange is synchronized so that the agent that made the call
sends messages first. After it has sent all messages, the roles are ex-
changed, and so on.

If in two consecutive operations of Comm-Exchange-* (Comm-Exchange-
Listen or Comm-Exchange-Talk) nothing is exchanged, then both par-
ties wait a small period of time and try again. This is repeated a
couple of times and if nothing was exchanged, then the connection is
closed. The time spent in keeping the connection open depends on the
parameter isEzpecting.

The sub-phases are done as follows:

Comm-Exchange-Talk Keep sending messages (AS-Send) until the
output buffer is empty.

Signal ‘switch’ (AS-Signal).

Comm-Exchange-Listen Keep receiving messages (AS-Receive) un-
til the line ‘switch’ is received.

The lines containing the string ‘ping’ are ignored. These lines
are sent when it is necessary to open the connection periodically,
such as with the applet agent or in vital connections. Their only
purpose is to open the connection, so they can be ignored after
they reach the destination.

4.2.3 KQML/KIF layer (KK)

In this layer, an agent constructs the outgoing KQML/KIF messages and the
incoming messages are parsed. First, the KQML part is parsed and if the
message contains a content field, the KIF parser finishes the process. In case
of a parsing error, a KQML error performative is sent (by putting it in the
output buffer).

4.2. MIN COMMUNICATION LAYERS 87

Besides accepting and sending messages, the KK layer is connected with
the Comm layer in two additional ways:

o the Comm layer generates unique reply-with labels for the KQML per-
formatives, and

o the parameter isEzpecting of the Comm layer 1s directly manipulated

by the KK layer.

88 CHAPTER 4. FRAMEWORK OF MIN

4.3 KQML/KIF communication module

The KQML/KIF communication module (KKCM) handles the communica-
tion of an agent with other agents at the communication layer KK and all
lower layers. In one direction, it receives messages from the agent VCM and
sends them to the appropriate agents and, in the other direction, it receives
messages from the other agents and, after doing KQML and KIF parsing,
leaves them to be picked up by VCM.

There are two kinds of communication modules: the applet communica-
tion module and the team communication module.

4.3.1 Applet KKCM

The applet communication module (Applet KKCM) is used by the applet
agents. It cannot listen to a server port and it does not have contact with
more than one other agent. The structure of the applet KKCM is shown in
Figure 4.2.

When a message has to be sent, then one of the KQML/KIF generator
methods is invoked and the KQML/KIF message is generated and put into
the output buffer. The communicator is a daemon thread running in an
infinite loop. It checks whether there are any messages in the output buffer
and, if there are, starts the connection (Comm-Open-Out).

During the Comm-Exchange phase, some messages are received. If they
are not ignored (ping messages) they are parsed, asynchronously by the in-
terpreter threads. If a parse error occurs, the message is discarded and an
error message is put into the output buffer. The final interpretations are
stored into the input buffer, where the VCM can pick them up.

The AS level of communication is handled by the agent socket. The
Comm level is handled by the communication manager. The communicator
handles the Comm-Exchange part of the protocol. The KK level is handled
by the KQML/KIF interpreter and the KQML/KIF generator methods.

4.3. KQML/KIF COMMUNICATION MODULE 89

@)

t

h AppIEt KKCM Input Buffer ¢ \Vj

KQML/KIF C

€ i Generator M
ﬁ Methods

r KQML/KIF | tLL
Interpreter \

A

g Communication Manager

<— Communicator | Agent ID Data Output Buffer

e {

n

t

O Objects (j Threads 2 Synchronized-access
D Methods (j} Daemon threads i Agent socket

Figure 4.2: Applet KKCM structure

4.3.2 Team KKCM

The agents that are not applets are less restricted, so they can communicate
to more than one other agent. The communication is realized over an array
of communication managers, called the communication team, hence this kind

of KKCM module is called the team KKCM.

Figure 4.3 shows the structure of the team KKCM. The main difference
compared to the applet KKCM is the listener. The listener daemon opens
a server socket and listens for incoming connections. It handles the phase
Comm-Open-In-1 of the Comm protocol. The phase Comm-Open-In-2 is
handled by the communication team object, and Comm-Open-In-3 and 4 by
the communication manager. As with the applet KKCM, the communicator
performs the Comm-Exchange phase.

Figure 4.4 shows the communication layers and the objects and methods
in the KKCM team that handle the protocol portions.

90

w ~* s o0oQ >

CHAPTER 4. FRAMEWORK OF MIN

Team KKCM
Input Buffer ¢ vV
KOML/KIF / C
i Generator
L istener Methods / M
KQML/KIF |
Interpreter W
Communication Team
Communication Manager
Communication Manager
Communication Manager
-T ﬂ’ Agent ID Data Output Bufer ¢
Inactive agent socket

Figure 4.3: Team KKCM structure

4.3. KQML/KIF COMMUNICATION MODULE

Out In
- TCPIP
Java socket
o Agent Socket
o Listener

CommTeam.answer

CommM anager.takeOver

CommM anager.getSocket

Communicator

KQML/KIF (Generator and interpreter)

VCM

Figure 4.4: Communication layers

91

Comm layer

92 CHAPTER 4. FRAMEWORK OF MIN

4.4 Agent structure

We now give a coarse structure for each agent type. The complete MIN
framework will include more specific agent models. However, it is left for
future work and, for now, we present only a high-level algorithm and the
agent structures that were the motivation for building these lower layers.

The following algorithm is the general VCM algorithm (the main agent
algorithm):

Algorithm XVII: General VCM algorithm
Input: VKB
Output: VKB (changed)

(The exchanged messages are also part of the input and output.)
Sleepy + false
Load the persistent part of VKB and initialize
While not Sleepy do

Accept an out-of-context message m

Start a new task-handling thread
Wait for all threads (except daemons) to finish
Save the persistent part of VKB

NO T e

While a task is handled, a series of messages is exchanged with other
agents and the environment. These messages are part of a context. The
messages that are not related to any existing task are called out-of-context
messages.

The conceptual structure of each agent type is presented in Figures 4.5—
4.8. The figures speak for themselves. We will not describe them further.

4.4. AGENT STRUCTURE

Q/A-Agent

KQML/KIF ~ Virtual
Communication Control
Module Module

$

Virtua
Knowledge Natural Language User
Base Processing ~~| Communication

Module Module

Figure 4.5: Q/A-agent structure

T-Agent

KQML/KIF
Communication |~

Module)
Virtua
Control
Module
Virtual
Knowledge <=
Base

RO

Figure 4.6: T-agent structure

93

94

CHAPTER 4. FRAMEWORK OF MIN

I-Agent

KQML/KIF Virtual
Communication |~ Control
Module Module

Virtual Agent-specific
Knowledge Capabilities
Base Module

L PP

Figure 4.7: I-agent structure

L-Agent

e

KQML/KIF 'Virtual
Communication |~ Control
Module Module
b
// $

Virtua Resource-specific

Knowledge Communication

Base Module

4

v
>

Figure 4.8: L-agent structure

Chapter 5

Experiments and
Demonstration

The experiments and testing are not done on a scale that could be considered
a proof of stated goals. However, they are encouraging and worth mentioning.

There are two sections in this chapter. Section 5.1 presents the testing
results of the system NL PAGE, and Section 5.2 describes a demonstration
with a simple MAS.

5.1 NL PAGE

An experiment with the parser generator N PAGE was done using 31 En-
glish sentences.! The grammar constructed included all feature constraints
that we discussed, as well as handling of movement phenomena.

The input forest generated a lexicon containing 100 lexemes, and a gram-
mar containing 206 rules. Obviously the emphasis was on the grammar and
not the lexicon. Managing a large lexicon is an old problem and efficient
techniques for dealing with it are well known. In our example, the lexicon is
simply stored in the form of a sorted array and the lexemes are found using

1The list of sentences and obtained parses is given in Appendix D.

95

96 CHAPTER 5. EXPERIMENTS AND DEMONSTRATION

C parser Java parser
35 6004
o
e} (%))
c ©
] ;
c 1S
< | _g
E £
=
““““““““““““““““ by (Cpars)
Sentences in increasing complexity Sentences in increasing complexity

Figure 5.1: Timing results for the generated C and Java parsers

binary search.

The following timing experiments are done on a Sun SPARCserver 670MP
machine running the SunOS 4.1.2 operating system. The C compiler gce 2.7.2
was used to compile the C code and the Sun Java Development Kit (JDK)
1.0.2 was used to compile and execute the Java code.

The generated parsers (C and Java) are run on 31 test sentences in in-
creasing order of complexity and the timing results obtained are shown in
Figure 5.1. The actual numbers are given in Table 5.1. The minimum,
maximum, and average parsing times and standard deviations are given in

Table 5.2.

Because the test sentences are ordered by increasing complexity (more
or less), it is not a surprise to see that the time spent by the C parser
is monotonically increasing (almost linearly), as shown in the figure. The
behavior of the Java parser parsing time is more chaotic.

The parsers were not compared to any known parsers. However, an ex-
perimental parser built in Lisp and using a more standard parsing algorithm
was tested on the same sentences and its parsing times were in a range ap-
proximately one second to a minute per sentence.

97

5.1. NL PAGE
Sentence | C parser | Java parser || Sentence | C parser | Java parser

(msec) (msec) (msec) (msec)

1. 0.68 108.7 16. 13.52 285.8

2. 1.33 102.1 17. 14.45 205.3

3. 2.11 146.8 18. 15.21 142.8

4. 2.82 120.2 19. 16.06 163.7

5. 3.60 136.1 20. 17.55 579.9

6. 4.44 173.9 21. 18.96 387.3

7. 5.19 116.4 22. 20.42 470.8

8. 5.94 111.0 23. 21.74 422.3

9. 6.75 129.3 24. 22.94 243.7

10. 7.63 141.7 25. 24.02 185.7
11. 8.60 169.3 26. 25.43 318.4
12. 9.47 160.8 27. 26.40 169.9
13. 10.24 137.5 28. 27.48 236.2
14. 11.44 315.8 29. 28.50 192.7
15. 12.35 190.8 30. 29.51 176.0
31. 30.49 227.9

Table 5.1: Parsing times

C parser | Java parser
(msec) | (msec)
Minimum parsing time 0.68 102.1
Maximum parsing time 30.49 579.9
Average parsing time 14.36 215.1
Standard deviation 9.35 115.7

Table 5.2: Parsing time statistics

98 CHAPTER 5. EXPERIMENTS AND DEMONSTRATION

5.2 A simple MIN system

A simple demonstration MIN system integrates the results presented so far.
The NL PAGE parser generator is used to build a parser in Java, which
is then incorporated into a Q/A-agent. Three other agents are built: a T-
agent, an [-agent, and an L-agent. The inter-agent communication relies on
the communication layers presented in the previous chapter.

Figures 5.2-5.5 show four images captured from Netscape windows during
a system run. As we can see, the time spent for parsing the query is negligible
(0.049 seconds) while answering the query took 14 seconds. The time was
spent on the inter-agent message exchange (QQA-TA-IA-LA and back), on
the connection between the L-agent and the Multitext database, and on the
message processing (each agent does at least KQML/KIF parsing). There is
space for improvement in terms of efficiency, which is needed if we consider
that the NL grammar and lexicon are very small, and that the agents do
very light processing in this system.

5.2. A SIMPLE MIN SYSTEM 99

[@] Netscape: Min: QA

File Edit View Go Bookmarks Options Directory Window Help

o [l |1 By i g
Back Frrvgri|i Home Reload Qpen Print Find

Location: |Ehttp: Jiplg.uwaterloo.ca/~vkeseld /minQh. html

What’s New| What’s Cool| Handbook| Net Search| Net Directory| Software|

Welcome to
Miitti-agent architeciure for infernel inforetion relrieval using Nalora! bngeage msmg/// '

This is 367th access since June 25, 1997,

[Hi | 5

I am agent 0A Min -- part of the multi-agent system Min.

pctually, I still don't know my real name. That is why we need to wait a bit.

Checking if the family Min is ready. ..

Min: Min has been sleeping and is awake, now.

[T Min listening at port plg. uwaterloo. ca:37899.

Connecting. .. Got my uvnigue name: QA-1

[Mow, we are ready!

[Enter a query:

EE 5 4

B
© 1007 Viado Keself, last updater Aug ¢, 1997 @

Hal

Figure 5.2: Demonstration MIN MAS: Initialization

100 CHAPTER 5. EXPERIMENTS AND DEMONSTRATION

[@] Netscape: Min: QA

File Edit View Go Bookmarks Options Directory Window Help

o | e [By bl I

Back Frrvgri|i Home Reload Qpen Print Find

Location: |Ehttp: Jiplg.uwaterloo.ca/~vkeseld /minQh. html

What’s New| What’s Cool| Handbook| Net Search| Net Directory| Software|

Welcome to

Medti -agent architeciure for internet information refrievyl using Nafora! ﬂr@c&ge Msmg/// '

This is 367th access since June 25, 1997,
H1 | il

I am agent 0A Min -- part of the multi-agent system Min.

[hctually, I still don’t know my real name. That is why we need to wait a bit.
Checking if the family Min is ready. ..

Min: Min has been sleeping and is awake, now.

[T Min listening at port plg. uwaterloo. ca:37899.

Connecting. .. Got my uvnigue name: QA-1

[Mow, we are ready!

[Enter a query:
Find me the number of articles containing the words jawa, lex, =nd yacc in

EE 5 4
the subject line]

© 1007 Viado Keself, last updater Aug ¢, 1997 @

Hal

Figure 5.3: Demonstration MIN MAS: Entering a query

5.2. A SIMPLE MIN SYSTEM

101

[@] Netscape: Min: QA

File Edit View Go Bookmarks Options Directory Window

Help |

o D @ w| & 2l
Back Homne Reload |§ &g Qpen Print Find

Location: |Ehttp: Jiplg.uwaterloo.ca/~vkeseld /minQh. html

What’s New| What’s Cool| Handbook| Net Search| Net Directory| Software|

Welcome to

Medti -agent architeciure for fgmr information relrieval a_msg

This is 367th access since June 25, 1997,

[Find me the rnumber of articles containing the words jawa, lex, and yacc in
the subject line.
[Parsing time: 0.049 seconds.
1 successful parse:
(s (FIND "Find me ")
{QUERY
{ONUM (NUM " the nomber of ")
(QINSE
(ARTCL "articles ")
(CON "containing ")
(BLIST
{IGH1 "the words ")
(BLIST
(NAME "java, ")
(ALIST
(MAME “lex, ")
(BND "=nd ")
(MAME “wacc “J1))
{INSUE
{(IN "in ")
(SUE "the subject line. "}))3))
[Press Enter to conbtinue. a
EE 5 4

i

© 1007 Viado Keself, last updater Aug ¢, 1997

Hal

Figure 5.4: Demonstration MIN MAS: NL parsing

102 CHAPTER 5. EXPERIMENTS AND DEMONSTRATION

[@] Netscape: Min: QA

File Edit View Go Bookmarks Options Directory Window Help
o o) i i
Back Homne Reload Qpen Print Find

Location: |Ehttp: Jiplg.uwaterloo.ca/~vkeseld /minQh. html

What’s New| What’s Cool| Handbook| Net Search| Net Directory| Software|

Welcome to

Medli—agent armm?m For f.{?!ic:vr_aer frrforation mﬁmw a_msg Nalorad lnguage Msmg/// '

This is 367th access since June 25, 1997,

(ONUM (NUM "the number of ")
{QINSE
(BRTCL "articles ")
(CON "containing ")
(BLIST
{IGH1 "the words ")
(ALIST
(WaME "Jawa, ")
(ALIST
(NAME "lex, ")
(BND "=nd ")
(NAME "yacc "])))

{INSUE
[IN "in ")
{SUE "the subject line."})))))

[Press Enter to continue.
Creating KIF query. ..

(length (keywords-and subject jawa lex wacc))
. sending it te TR ...

[Elapsed time: 14 sec.

[hnzwer: 1 article.

4]
i

© 1007 Viado Keself, last updater Aug ¢, 1997 @

Hal

Figure 5.5: Demonstration MIN MAS: Retrieving the answer

Chapter 6

Conclusion

In this work, we have defined a problem—the problem of InTR—and we pro-
posed an approach to this problem that combines natural language processing
and multi-agent systems.

The Internet information space is both vast and complex—it embraces the
whole planet and has heterogeneous contents related to all kinds of human
activity. Therefore, the InIR problem i1s a hard and complex one requir-
ing that many solution models be extensively tried to obtain a satisfactory
retrieval system.

It is recognized that multi-agent systems could provide a scalable and
flexible solution. There i1s a long list of projects that can be classified as
agent-based information retrieval systems [Sob]. The MIN approach can be
seen as a part of this large research effort.

The use of NLP in IR, including InIR, is not a new idea. However, it
is a new approach to combine NLP with MAS’s on this task. The research
direction set in this work was to examine the combination of MAS’s and
NLP in solving the problem of InIR, and to make some first specification
and implementation steps that will be the basis for further research.

The first step was to specify an NLP model that would satisfy the require-
ments imposed by our environment. The specification is based on a trade-off
between the NLP formalisms proved to describe natural languages well (at

103

104 CHAPTER 6. CONCLUSION

least English and the like), and some of the opposing requirements such as
efficiency considerations.

The NLP model found is not appropriate to be used directly. In addition
to this argument, the need for numerous parser variations, the need for flexi-
ble maintenance, and the generally dynamic nature of any NL lead us to the
construction of a parser generator—NL PAGE.

The generator can generate parsers in both the C and Java programming
languages. It is independent of both the natural language in question and
the target parser programming language. NL PAGE is the first step towards
MIN systems. It provides a tool for building the NLP agent components.

The second part of this thesis is the MIN framework—a Java-based multi-
agent framework. It is relatively independent of NI PAGE. Their only con-
nection is the purpose for which they are built, and that is the design of
MIN systems. Special attention is paid to the inter-agent communication
module, which includes the KQML/KIF layer and the lower layers. In the
KQML specification, the transport layer, is not specified since it is too im-
plementation specific. We implemented the transport layer which satisfies
the requirements defined by the needs of a future MIN system.

The MIN framework is presented in an intermediate stage. It is not
supposed to consist only of the transport layer implementation, but should
also embrace the agent specification above the KQML/KIF level. At this
stage, this higher-level part of the framework is described in very general
terms.

The number of open issues is much larger than the number of solved ones.
We list some of them:

e NL PAGE is tested with a small grammar and lexicon. Before build-
ing a working MIN prototype, several carefully prepared and complex
parsers should be created for (J/A-agents and I-agents. For this pur-
pose, appropriate parse forests have to be constructed.

As a part of this effort, NL PAGE should be tested with large grammars
and large lexicons.

105

e What is the inter-agent query format? We know that it is expressed in
the combined KQML/KIF language, but the ontologies (a part of the
KIF specification) for certain domains have to be specified. This issue
must be resolved so that we know how to form the query that is passed
by a Q/A-agent to other agents.

The format has to support the conceptual IR.

e How does an agent advertise its capabilities to other agents? We have
to decide how to represent any specific InIR capabilities that an agent
can have. The general concept of an agent advertising its capabilities
is described in the KQML specification but more should be said in the
context of InIR.

For example, how can an L-agent advertise itself? We could manually
construct the representation of its abilities, but if the resources for
which it is responsible change, then it should be able to change its
advertising information.

e The question of agent coordination. When a new agent joins a MAS
and advertises itself, how should we interconnect it with other agents?

o Agent planning. When a T-agent or I-agent accepts a query, it has
to decide whether to break the query into sub-queries, how to form
new queries, which agents to send it to, and what internal actions to
perform.

e Caching and document indexing. How does an I-agent use its NLP
capabilities? How should documents be indexed? How are documents
matched to queries? How can information be reused, i.e. how can
results be cached?

There are many open questions and the answers to many will be difficult
to obtain. But the pressing need for better orientation tools in the exploding
Internet space forces us to keep looking for solutions.

Appendix A

Abbreviations

page number

Al Artificial Intelligence 7
AOP Agent-oriented Programming 8
AS Agent Socket communication layer 82
CGI Common Gateway Interface 78
Comm Message exchange communication layer Commu- 82

nicator layer

CPU Central Processing Unit 95
dfv-item default feature value information 58
FTP File Transfer Protocol 2
HTML Hypertext Markup Language 4
I-agent Intermediate Agent 15
IA Intermediate Agent 15
Inl-space Internet Information space 3
InIR Internet Information Retrieval 1

106

IP

IR
KAPI
KIF
KK
KKCM
KQML
L-agent
LA

MA

MAS
MIN

NL

NLP

NL PAGE
OOP

Q/A
Q/A-agent
QA
T-agent
TA

TCP
TCP/IP

Internet Protocol

Information Retrieval

KQML Application Programmer’s Interface
Knowledge Interchange Format

KQML/KIF communication layer

KQML/KIF Communication Module
Knowledge Query and Manipulation Language
Low-level retrieval Agent

Low-level retrieval Agent

multi-agent

Multi-agent System
Multi-agent system for Internet information re-

trieval using Natural language processing
Natural Language

Natural Language Processing
NL Parser Generator
Object-oriented Programming
Query-answering Agent
Query-answering Agent
Query-answering Agent
Top-level planning Agent
Top-level planning Agent
Transmission Control Protocol

Transmission Control Protocol/Internet Protocol

107

22
11
82
88

15
15
76

12
23

15
15
15
15
15

108

URL
VCM
VKB
WWW

APPENDIX A.

Uniform /Universal Resource Locator
Virtual Knowledge Module

Virtual Knowledge Base

World Wide Web

ABBREVIATIONS

74
74

Appendix B

Notation and Terminology

B.1 Algorithms and data structures

The notation used in the algorithms is quite straightforward and readable,
so we will list the less common conventions:

o There are no beginning and ending statements for a block. Instead,
blocks are denoted by indentation and a vertical rule.

e Algorithm names are printed in boldface font (e.g., ParseN_X). The
algorithm input parameters as well as the local variables are printed in
italic font (e.g., sp), and the global variables are printed in sans-serif

font (e.g, Chart).

B.2 Regular expressions

We use regular expressions to represent reqular sets. We are going to define
them in an implicit way through the following notation and terminology
description.

The wvisible literal characters are represented in typewriter font. They can
be concatenated in strings that represent literal strings. For example:

109

110 APPENDIX B. NOTATION AND TERMINOLOGY

abc represents a string of 3 letters;
112% () *+ 1s a string of 8 characters.

The list of all literal visible characters follows: ', ", #. $, %4, &, >, (,), *, +,
’7_7 °7/7O717"'797:7;7<7=7>7?7©7A7B7"'7Z7[7\7]7'\7_7‘7a7b7"'7
Z7 {7 |7 }7 and ~'

The invistble literal characters (space, tab, and new-line) are represented
as ., pm, and g, respectively. The visible literal characters and the invisible
literal characters are called the literal characters. The set of literal characters
has a double role in a certain sense. Besides being used in regular expressions,
the set is actually the alphabet over which we want to construct and represent
our regular languages (as well as other languages). When we want to precisely
refer to the latter function we will use the term target alphabet.

All characters that occur in regular expressions and are not literal charac-
ters are called meta-characters. An example of meta-characters is the “true”
spaces. Any kind of “true” space (spaces, tabs, or new-lines) occurring in
a regular expression should be ignored or understood as separators (i.e. not
being part of the regular expression). It should be clear from the context
which of these two options is valid. For example, if a regular expression is
too long to be typeset in one line of the text, then it will be broken in several
lines without any special markup.

As we will see, regular expressions have recursive structure, i.e. some of
their parts (connected parts or substrings, more precisely) are also regular
expressions themselves. We will call these parts suberpressions.

If a regular expression or a subexpression of a regular expression repre-
sents a certain set of strings (i.e. language or sublanguage), then we say that
that regular expression matches those strings. Hence, we can say that any
literal character matches itself. Any string of literal characters is called the
literal string and it also matches itself. The literal strings and the literal
characters are called the literals.

The two meta-characters [and | (which should be distinguished from
the literals [and 1) are used to create a regular expression that matches
one-character strings from a set. The expression is a list delimited by meta-
characters [and | and consisting of literal characters and meta-character —.
The set complement operation can be applied to this expression. For exam-

B.2. REGULAR EXPRESSIONS 111

ple, an expression can be built:

1. By listing the characters. E.g., [abcd,n] matches any of the characters
a, b, c,d, |, or g.

2. By using the meta-character — (to be distinguished from the literal -),
which is used to represent all characters from an interval. E.g., [La-z.]
matches _, ., or any of the lowercase letters. The ordering from the
above list of the visible literal characters is used (ASCII ordering).
Only visible literal characters can be used as the limits of the interval.

3. By using the complement. A line above an expression between | and
| means the complement set operation. E.g., [A-Za-z] matches any
character that is not a letter.

To match the empty string, we will use the expression €. The expression ||
1s a regular expression that does not match any string and it seems to be
quite useless. However, after applying the set complement operation we get

the expression || which matches any one-character string and is very useful
and used frequently.

We have already implicitly used concatenation in the definition of literal
strings. Generally, the concatenation of two regular expressions creates a
new regular expression that represents the concatenation of the two regular
languages. E.g., the regular expression [A-Z][0-9] represents all two-character
strings such that their first character is an uppercase letter and their second
character 1s a digit.

The Kleene closure is denoted by * (to be distinguished from *). E.g.,
the regular expression 0* represents all strings of zeros (including the empty
string). The Kleene closure (as well as other “superscript” meta-characters)
has higher priority than concatenation. When we need to override this rule
we use meta-characters (and) (to be distinguished from (and)). If e is a
regular expression, then (e) is the same regular expression but we made sure
that it won’t be “broken” by a high-precedence operator in a larger expres-
sion. E.g., 01* represents the strings 0, 01, 011, ...; while the expression
(01)* represents the empty string, 01, 0101,

If e is a regular expression, then ((e)(e)*) can be written as (e)* (to be
distinguished from the literal +). This operation is called the positive closure.

112 APPENDIX B. NOTATION AND TERMINOLOGY

The Kleene closure and the positive closure can be defined in the following
way: If the regular expression e represents the language L, then the regular
expression (e)* matches any finite concatenated sequence of words from L.
The empty sequence, 1.e. the empty string, is also included. If we do not want
to include the sequence of zero words then we use the positive closure (e).
If we want to match only the sequences of n words (n = 1,2,...) then
we write (e)”. If we want to match only the sequences of m to n words

1

» . The expression e; can be

(m,n = 0,1,2,..., m < n) then we write (e)2,
also written as e’.

If the regular expression e; represents the language L; and the regular
expression e, represents the language Lo, then the language L; U Ly is rep-
resented by the regular expression (e;) | (e2). The meta-character | should
be distinguished from the literal |. The precedence of the operator | is lower
than the precedence of concatenation.

We frequently use regular expressions in lexical analysis. In lexical anal-
ysis, a long string is processed (typically a file, in a physical sense), so that
smaller substrings are extracted (called lexemes) by matching them with the
reqular patterns. Any regular expression is a regular pattern. The regular
patterns have somewhat richer structure, since they can include some infor-
mation about the context in which the matched string appears.

The meta characters called anchors (F is called left anchor and = is called
right anchor) can be used in a regular pattern. If e is a regular expression,
then the regular pattern e matches those strings that are matched by the
regular expression e and that are positioned at the beginning of a line (at
the beginning of the file or preceded by a new-line character). Given two
regular expressions e; and es, the pattern e;-1e; matches all strings matched
by e; that are followed, in a wider context, by a string matched by e;. For
example, the regular pattern -, matches a non-empty sequence of spaces
found at the beginning of a line, while the pattern ,,* -, matches a sequence
of spaces found at the end of a line (assuming that each line has a new-line
character at the end).

Appendix C

Web links

C.1

http:
http:
http:
http:
http:
http:
http:
http:
http:
http:

Search engines

/[www

/ /www

/ /www

.altavista.digital.com/
/ /www .
//www .
.hotbot . com/
//www .
//www .
//www .
.planetsearch.com/
//www .
//www .

dejanews.com/
excite.com/

infoseek.com/
lycos.com/
opentext.com/

webcrawler. com/
yahoo.com/

C.2 All-in-one pages

http://www.traveller.com/aliweb/
http://www.albany.net/allinone/
http://pubweb.nexor.co.uk/public/cusi/cusi.html CUSI
http://www.iTools.com/find-it/find-it .html Find-It
http://www.search.com/

113

AltaVista
DejaNews
Excite
HotBot
Infoseck
Lycos

Open Text
Planet search
WebCrawler
Yahoo

ALIWEB
All-In-One

Search.com

114 APPENDIX C. WEB LINKS

C.3 Meta-search engines

http://lorca.compapp.dcu.ie/fusion/
http://www.highway61.com/
http://mb.inference.com/ifind/
http://www.mamma . com/
http://metacrawler.cs.washington.edu/
http://www.designlab.ukans.edu/profusion/
http://williams.cs.colostate.edu:1969/

C.4 Alternative search sites

http://www.humansearch.com/
http://www.pacprospector.com/input.html

Fusion
Highway 61
Inference find
Mamma
Metacrawler
ProFusion
SavvySearch

Human Search
PACprospector

Appendix D
Test sentences

These sentences are used to test and measure the timings of the NL PAGE
system:

1. T give

(s (wp1 (NP (PRO "I ")))
(VP (V "give.")))

2. 1 gives.
No successful parses!
3. He was given.

(8 (NP1 (NP (PRO "He ")))
(V "was n)
(VP (V "given.")))

4. Him was given.
No successful parses!
5. We was given.
No successful parses!

6. We were given.

115

116 APPENDIX D. TEST SENTENCES

(8 (NP1 (NP (PRO "We ")))
(V "were ")
(VP (V "given.")))

7. I can give.

(8 (wp1 (NP (PRO "I ")))
(MOD "can ")
(VP (V "give.")))

8. I can given.
No successful parses!
9. I do give.

(s (NP1 (NP (PRO "I ")))
(V "dO n)
(VP (V "give.")))

10. The man has given.

(s (NP1 (WP (ART "The ")
(N "man ")))
(V "has n)
(VP (V "given.")))

11. The nice men have given.

(s (NP1 (WP (ART "The ")
(ADJL(ADJ "nice "))
(N "men ")))
(V "have ")
(VP (V "given.")))

12. You give a stamp.

(s (npP1 (WP (PRO "You ")))
(VP (V "give ")
(VPt1(NP (ART "a ")
(N "stamp.")))))

13. You give I.

No

14.

(s

15.

(s

16.

(s

17.

(s

18.

(s

19.

successful parses!
I had been giving men a chance.

(npP1 (NP (PRO "I ")))
(V "had n)
(VP (V "been ")
(VP (V "giving ")
(VPt1(NP (N "men "))
(NP (ART "a ")
(N "chance."))))))

I gave at the office.

(np1 (NP (PRO "I ")))
(VP (V "gave ")
(VvPt1(PPL (PP (PREP "at ")
(NP (ART "the ")
(N "office.")))))))

The stamp was bought by the office.

(NP1 (NP (ART "The ")
(N "stamp ")))
(V "was n)
(VP (V "bought ")
(VPt1(PPL (PP (PREP "by ")
(NP (ART '"the ")
(N "office.")))))))

This stamp is for you.

(NP1 (NP (DET "This ")
(N "stamp ")))
(V "iS n)
(VPt1(PPL (PP (PREP "for ")
(NP (PRO "you."))))))

This buys it.

(NP1 (NP (PRO "This ")))
(VP (V "buys ")
(VPt1(NP (PRO "it.")))))

Some give to you.

117

118 APPENDIX D. TEST SENTENCES

(s (npP1 (WP (PRO "Some ")))
(VP (V "give ")
(VvPt1(PPL (PP (PREP '"to ")
(NP (PRO "you.")))))))

20. This stamp was bought at the office by you for me.

(s (vP1 (NP (DET "This ")
(N "stamp ")))
(V "yas n)
(VP (V "bought ")
(VvPt1(PPL (PP (PREP "at ")
(NP (ART "the ")
(N "office ")))
(PPL. (PP (PREP "by ")
(NP (PRO "you ")))
(PPL (PP (PREP "for ")
(NP (PRO "me.")))))))))

21. This stamp was bought at the office by I for me.
No successful parses!

22. This stamp was bought at the office by you for I.
No successful parses!

23. This stamp was bought by you at the office.

(s (NP1 (NP (DET "This ")
(N "stamp ")))
(V "vas n)
(VP (V "bought ")
(VPt1(PPL (PP (PREP "by ")
(NP (PRO "you ")))
(PPL. (PP (PREP "at ")
(NP (ART "the ")
(N "office."))))))))

24. For her to argue can be a pleasure.

(s (PP (PREP "For ")
(NP (PRO "her ")))
(s (NP1 (TO "to ")

25.

No
26

(s

27

(s

28.

(s

29.

(VP (V "argue ")))
(MOD "can ")
(VP (V "be n)
(VPt1(NP (ART "a ")
(N "pleasure."))
(PPL {PP (PREP "For ")
(NP (PRO "her "))1})))))

For her to argue give pleasure.

successful parses!
. For it to have been bought gives pleasure.

(PP (PREP "For ")
(NP (PRO "it ")))
(s (P1 (TO "to ")
(V "have ")
(v (V "been ")
(VP (V "bought "))))
(VP (V "gives ")
(VPt1(NP (N "pleasure."))
(PPL {PP (PREP "For ")
(NP (PRO "it ")) })))))

. When will it give pleasure?

(PP "When ")
(MOD "will ")
(nrP1 (NP (PRO "it ")))
(VP (V "give ")
(VPt1(NP (N "pleasure?"))
(PPL {PP "When "}))))

Will the man be given a chance?

(MOD "Will ")
(NP1 (NP (ART "the ")
(N "man ")))
(VP (V "be ")
(VP (V "given ")
(VPt1(NP (ART "a ")
(N "chance?"))))))

Did the office buy a stamp?

119

120 APPENDIX D.

(s (v "Did ")
(NP1 (WP (ART "the ")
(N "office ")))
(vP (V "buy ")
(VPt1(NP (ART "a ")
(N "stamp?")))))

30. Did the office buys a stamp?

No successful parses!
31. How many stamps were bought?

(s (NP1 (NP (DET "How many ")
(N "stamps ")))
(V "were "

(VP (V "bought?")))

TEST SENTENCES

Appendix E

Agent log files

These are the agent log files created during the demonstration run given in
Chapter 5:

The Q/A-agent log file:

Applet begins.
7?QA-: QA starts!
Applet starts.
?QA-: Reg.new agent:TA, host:plg.uwaterloo.ca(null)
?QA-: changed info for TA: type=TA port=37899
QA-1: Got new name:QA-1
QA-1:>TA(plg.uwaterloo.ca, 129.97.140.10):
(register :sender QA-1
:content (agent-info QA-1 QA mercator.math 0)
:ontology min-ontology :receiver TA :language KIF)
QA-1:>TA(plg.uwaterloo.ca, 129.97.140.10):
(ask-one :sender QA-1
:content (length (keywords-and subject java lex yacc))
:ontology min-ontology :receiver TA :reply-with TA.1
:language KIF)
QA-1:<TA(plg.uwaterloo.ca, 129.97.140.10):
(tell :sender TA :reply-to TA.1
:content (answer 1) :ontology min-ontology
:receiver QA-1 :language KIF)

The T-agent log file:

121

122 APPENDIX E. AGENT LOG FILES

TA starts: Mon Aug 11 01:26:55 EDT 1997
TA:port:37899 host:plg
TA:Reg.new agent:IA-1, host:plg.uwaterloo.ca(129.97.7.16)
TA:Reg.new agent:LA-1, host:plg.uwaterloo.ca(129.97.7.16)
TA:<IA-1(plg.uwaterloo.ca, 129.97.7.16):
(register :sender IA-1
:content (agent-info IA-1 IA plg 37900)
:ontology min-ontology :receiver TA :language KIF)
TA:<LA-1(plg.uwaterloo.ca, 129.97.7.16):
(register :sender LA-1
:content (agent info LA-1 LA plg 37902)
:ontology min-ontology :receiver TA :language KIF)
TA:changed info for IA-1: type=IA port=37900
TA:changed info for LA-1: type=LA port=37902
TA:>IA-1(plg.uwaterloo.ca, 129.97.7.16):
(register-agent :sender TA
:content (agent-info LA-1 LA plg.uwaterloo.ca 37902)
:ontology min-ontology :receiver IA-1 :language KIF)
TA:>LA-1(plg.uwaterloo.ca, 129.97.7.16):
(register-agent :sender TA
:content (agent-info IA-1 IA plg.uwaterloo.ca 37900)
:ontology min-ontology :receiver LA-1 :language KIF)
TA:Reg.new agent:QA-1,
host :mercator.math.uwaterloo.ca(129.97.140.145)
TA:<QA-1(mercator .math.uwaterloo.ca, 129.97.140.145):
(register :sender QA-1
:content (agent-info QA-1 QA mercator.math 0)
:ontology min-ontology :receiver TA :language KIF)
TA:changed info for QA-1: type=QA port=0
TA:<QA-1(mercator .math.uwaterloo.ca, 129.97.140.145):
(ask-one :sender QA-1
:content (length (keywords-and subject java lex yacc))
:ontology min-ontology :receiver TA :reply-with TA.1
:language KIF)
TA:>IA-1(plg.uwaterloo.ca, 129.97.7.16):
(ask-one :sender TA
:content (length (keywords-and subject java lex yacc))
:ontology min-ontology :receiver IA-1 :reply-with IA-1.1
:language KIF)
TA:<IA-1(plg.uwaterloo.ca, 129.97.7.16):
(tell :sender IA-1 :reply-to IA-1.1
:content (answer 1) :ontology min-ontology
:receiver TA :language KIF)
TA:>QA-1(mercator .math.uwaterloo.ca, 129.97.140.145):
(tell :sender TA :reply-to TA.1

123

:content (answer 1) :ontology min-ontology
:receiver QA-1 :language KIF)

124 APPENDIX E. AGENT LOG FILES

The I-agent log file:

IA starts:Mon Aug 11 01:26:57 EDT 1997
IA-1:port:37900 host:plg
IA-1:Reg.new agent:TA, host:plg.uwaterloo.ca(null)
IA-1:changed info for TA: type=TA port=37899
IA-1:>TA(plg.uwaterloo.ca, 129.97.7.16):
(register :sender IA-1
:content (agent-info IA-1 IA plg 37900)
:ontology min-ontology :receiver TA :language KIF)
IA-1:<TA(plg.uwaterloo.ca, 129.97.7.16):
(register-agent :sender TA
:content (agent-info LA-1 LA plg.uwaterloo.ca 37902)
:ontology min-ontology :receiver IA-1 :language KIF)
IA-1:Reg.new agent:LA-1, host:plg.uwaterloo.ca(null)
IA-1:changed info for LA-1: type=LA port=37902
IA-1:<TA(plg.uwaterloo.ca, 129.97.7.16):
(ask-one :sender TA
:content (length (keywords-and subject java lex yacc))
:ontology min-ontology :receiver IA-1 :reply-with IA-1.1
:language KIF)
IA-1:>LA-1(plg.uwaterloo.ca, 129.97.7.16):
(stream-all :sender IA-1
:content (keywords—and subject java lex yacc)
:ontology min-ontology :receiver LA-1 :reply-with LA-1.1
:language KIF)
IA-1:<LA-1(plg.uwaterloo.ca, 129.97.7.16):
(tell :sender LA-1 :reply-to LA-1.1
:content (article-outline "SOFTWARE ENGINEER, JAVA, C++,
COMPILER, LEX, YACC, PCCTS, UNIX, NT,"
"jason@futurelink.sfbaynet.com (Jason Cale)"
"ba.jobs.offered" 42)
:ontology min-ontology :receiver IA-1 :language KIF)
IA-1:<LA-1(plg.uwaterloo.ca, 129.97.7.16):
(eos :sender LA-1 :reply-to LA-1.1 :receiver IA-1)
IA-1:>TA(plg.uwaterloo.ca, 129.97.7.16):
(tell :sender IA-1 :reply-to IA-1.1
:content (answer 1) :ontology min-ontology :receiver TA
:language KIF)

The L-agent log file:

LA starts:Mon Aug 11 01:26:58 EDT 1997
LA-1:port:37902 host:plg

125

LA-1:Reg.new agent:TA, host:plg.uwaterloo.ca(null)
LA-1:changed info for TA: type=TA port=37899
LA-1:>TA(plg.uwaterloo.ca, 129.97.7.16):
(register :sender LA-1
:content (agent-info LA-1 LA plg 37902)
:ontology min-ontology :receiver TA :language KIF)
LA-1:<TA(plg.uwaterloo.ca, 129.97.7.16):
(register-agent :sender TA
:content (agent-info IA-1 IA plg.uwaterloo.ca 37900)
:ontology min-ontology :receiver LA-1 :language KIF)
LA-1:Reg.new agent:IA-1, host:plg.uwaterloo.ca(null)
LA-1:changed info for IA-1: type=IA port=37900
LA-1:TA-1 at plg.uwaterloo.ca(129.97.7.16)
LA-1:<IA-1(plg.uwaterloo.ca, 129.97.7.16):
(stream-all :sender IA-1
:content (keywords-and subject java lex yacc)
:ontology min-ontology :receiver LA-1 :reply-with LA-1.1
:language KIF)
LA-1:Constructed GCL query:
("java"""lex"""yacc'")<subject
LA-1:>IA-1(plg.uwaterloo.ca, 129.97.7.16):
(tell :sender LA-1 :reply-to LA-1.1
:content (article-outline "SOFTWARE ENGINEER, JAVA, C++,
COMPILER, LEX, YACC, PCCTS, UNIX, NT,"
"jason@futurelink.sfbaynet.com (Jason Cale)"
"ba.jobs.offered" 42)
:ontology min-ontology :receiver IA-1 :language KIF)
LA-1:>IA-1(plg.uwaterloo.ca, 129.97.7.16):
(eos :sender LA-1 :reply-to LA-1.1 :receiver IA-1)

Bibliography

[AATO7]

[ABRS95]

[AGK*97]

[AL195]

[Bir95]

[Ble97]

[BPK196]

[CB]

A. T. Arampatzis, Koster C. H. A., and T. Tsoris. IRENA:
Information retrieval engine based on natural language anal-
ysis. In RIAQ’97, Conference Proceedings, Computer-assisted
information searching on Internet, pages 159-175, June 1997.

J. M. Andreoli, Uwe M. Borghoff, Pareschi Remo, and J. H.
Schlichter. Constraint agents for the information age. Journal
of Universal Computer Science, 1(12), December 1995.

Natalia Anikina, Valery Golender, Svetlana Kozhukhina,
Leonid Vainer, and Bernard Zagatsky. REASON: NLP-based
search system for the WWW, 1997.

http://www.lingosense.co.il/reason.htm.

James Allen. Natural Language Understanding. The Ben-
jamin/Cummings Publishing Company, Inc., 1995.

William P. Birmingham. An agent-based architecture for digital
libraries. D-Lib Magazine, July 1995.
http://www.dlib.org/d1lib/July95/07birmingham.html.

Michael Bleyer. CEMAS: A concept exchanging multiple agent
system for information retrieval on the world wide web, June

1997.

http://lia.univ-savoie.fr/ cemas.

Uwe M. Borghoff, Remo Pareschi, Harald Karch, Martina

Nohmeier, and Johann H. Schlichter. Constraint-based infor-
mation gathering for a network publication system. In Proceed-

ings, PAAM’96, London, U.K., April 1996.

Gordon Cormack and Forbes Burkowski. Multitext project.
http://multitext.uwaterloo.ca/.

126

BIBLIOGRAPHY 127

[CDRY7]

[CH95]

[DLNPW95]

[FG96]

[Fin97a)

[Fin97b]

[HU79)

[Kar96]

[KH95)

[LF97]

CDR, Stanford University. Java agent template (JATLite),

1997.
http://java.stanford.edu/java agent/html/.

Anil S. Chakravarthy and Kenneth B. Haase. NetSerf: Using
semantic knowledge to find Internet information archives. In
Proceedings of the 18th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval,

pages 4-11, Seattle, Washington, USA, July 1995.

Keith Decker, Victor Lesser, M. V. Nagendra Prasad, and
Thomas Wagner. MACRON: An architecture for multi-agent

cooperative information gathering. CIG home page, November

1995.

Stan Franklin and Art Graesser. Is it an agent, or just a pro-
gram?: A taxonomy for autonomous agents. In Proceedings of
the third International Workshop on Agent Theories, Architec-
tures, and Languages. Springer-Verlag, 1996.

Tim Finin. KIF—knowledge interchange format, 1997.
http://www.cs.umbc.edu/kse/kif/.

Tim Finin. KQML—knowledge query and manipulation lan-
guage, 1997.
http://www.cs.umbc.edu/kqml/.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation. Addison-Wesley,
1979.

Grigoris J. Karakoulas. The SIGMA project: Market-based
agents for intelligent information access. Canadian Artificial
Intelligence/Intelligence Artificielle auw Canada, 40:25-27, Au-
tumn 1996.

D. Kuokka and L. Harada. Matchmaking for information
agents. In Proceedings AAAI Spring Symposium on Informa-
tion Gathering from Heterogenous, Distributed Environments,

pages 672-678, 1995.

Yannis Labrou and Tim Finin. TR CS-97-03, a proposal for a
new KQML specification. Technical report, Computer Science
and Electrical Engineering Department, University of Mary-
land Baltimore County, February 1997.

128

[Lua97]

[Mau91a)]

[Mau91b]
[Mea)
[Mil95]
[Mol97]

[NPLL5]

[ONPL94]

[RN95]
[Sho93]
[Sob]

[Sun97]

BIBLIOGRAPHY

Xiaocheng Luan. JKP—Java KIF parser, 1997.
http://www.cs.umbc.edu/kse/kif/jkp/.

Michael L. Mauldin. Conceptual Information Retrieval; A Case
Study in Adaptive Partial Parsing. Kluwer Academic Publish-
ers, 1991.

Michael L. Mauldin. Retrieval performance in FERRET, 1991.
http://fuzine.mt.cs.cmu.edu/mlm/sigir91.html.

George A. Miller and et al. WordNet home page.

http://www.cogsci.princeton.edu/ wn/.

George A. Miller. WordNet: A lexical database for English.
Communications of the ACM, 38(11):39-41, November 1995.

Dustin Mollo. Perl language home page, 1997.
http://www.perl.com/index.html.

M. V. Nagendra Prasad, Victor R. Lesser, and Susan Lander.
Retrieval and reasoning in distributed case bases. Technical

Report UMass Computer Science 95-27, University of Mas-
sachusetts, 1995.

Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser. Co-

operative information gathering: A distributed problem solving
approach. Technical Report UMass Computer Science 94-66,
University of Massachusetts, 1994.

Stuart J. Russell and Peter Norvig. Artificial Intelligence, A
Modern Approach. Prentice Hall, Englewood Cliffs, 1995.

Yoav Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60:51-92, 1993.

Ian Soboroff. Agent-based information retrieval.
http://www.cs.umbc.edu/abir/.

Sun Microsystems, Inc. Java home page, 1997.
http://java.sun.com/.

Tom Wagner. CIG searchbots.

http://dis.cs.umass.edu/research/searchbots.html.

