
CSCI 2132
Software Development

Lecture 2:

Introduction to UNIX and Unix-like Operating Systems

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

7-Sep-2018 (2) CSCI 2132 1



Previous Lecture

• Course Introduction
– logistics and administrivia
– important dates, course description
– evaluation scheme and criteria
– textbooks
– lectures, exams, assignments, lab work

• Academic integrity policy
• Culture of respect
• Main learning objectives
• Motivation: Why UNIX, Why C
• Tentative list of course topics

7-Sep-2018 (2) CSCI 2132 2



Part 1: Unix Operating System

• Reading: Unix book, Chapter 1
• In the first part we will refresh our general

knowledge about operating system,
• learn more details about the Unix-style

operating systems
• learn about shell as a command-line interface
• learn about the file system
• learn about utilities and some tools used in

software development

7-Sep-2018 (2) CSCI 2132 3



What is an Operating System?

• What are some main functions of an operating
system?

7-Sep-2018 (2) CSCI 2132 4



Some Functions of an Operating System

• Provides an interface between application programs and the
hardware
– E.g., reads keyboard, writes to screen, writes and reads from

disks, sends data to printer, communicates with network card, . . .
– Hides the complexity of hardware interfaces from application

programs
– Protects the hardware from user mistakes and programming

errors (to prevent crashes)
• Manages the hardware resources of the computer systems

– CPU time, disk space, memory access, . . .
• Protects user’s programs and data from each other (security issues)
• Supports inter-process communications and sharing
• Provides resource sharing among users and processes

7-Sep-2018 (2) CSCI 2132 5



Overview of Unix-style Architecture

• The “Onion Skin Model” of Operating System

Application Programs

Operating System

Hardware Users

7-Sep-2018 (2) CSCI 2132 6



A more-detailed Onion-skin Model

Adapted from “Advanced Programming in the UNIX Environment” by
W. Richard Stevens and Stephen A. Rago:

system calls
shell

lib
ra

ry

ro
utin

es

h/w = hardware

utilities

applications

kernel

h/w

7-Sep-2018 (2) CSCI 2132 7



A Brief History of Unix: Multics

• Multics OS started in 1964, 5 years before Unix
• Developed by Ken Thompson, Dennis Ritchie, and

others
• Collaboration of MIT, AT&T (Bell Labs), and GE for

GE-645 computer
• Advances system with many features and an idea of

“computing utility”
• Hardware did not keep up with sofware, so it was slow

and expensive to run
• AT&T withdrew from the project and Ken Thompson

started working on a new system

7-Sep-2018 (2) CSCI 2132 8



UNIX: Created in 1969 by Ken Thompson

Ken Thompson; Dennis Ritchie and Ken Thompson (sitting) at PDP-11

7-Sep-2018 (2) CSCI 2132 9



UNIX: 1969– Development

• 1969: Implemented for an old PDP-7 in assembly
language on a GE system

• 1970-3: PDP-11, C language, reimplemented in C,
pipes, called it UNIX (Brian Kernighan)

• 1973-9: Source code available to universities, PDP-11
machines, very popular, very quickly

• 1980s: Commercialization, System V, BSD, GNU (1985)
• 1991: Linux (by, Linus Tornvalds), or GNU/Linux, new

code, distributions
• Other Unix/Linux-based OS’s: Chrome, Android,

MacOS, etc.

7-Sep-2018 (2) CSCI 2132 10



More Reading about UNIX History

• You can read a bit more about UNIX history in the book
by Nemeth et al., Unix and Linux System Administration
Handbook in the section ‘A Brief History of System
Administration’

• UNIX had many advanced features from early days,
such as concurrent execution

7-Sep-2018 (2) CSCI 2132 11



Unix Philosophy

• Write programs that. . .
– handle text streams; because that is a universal

interface
– work together; because then they can be easily

combined
– do one thing and do it well

• This allows for simple, elegant, and robust solutions
• Programs (utilities) can be combined into pipes
• A typical user is a programmer

– can decompose problems into subproblems, used to
concise syntax, understands data flow

7-Sep-2018 (2) CSCI 2132 12



The Concept of Pipeline

• Pipes are used to specify that the output of one process
is to be used as the input to another process

Process 1 Process 2
Data

Process 3
Data DataData

• Example:
who | sort

• Symbol ‘|’ is called ‘pipe’
• Related to every process having three default I/O

channels: stdin, stdout, and stderr (standard input,
standard output, standard error output)

7-Sep-2018 (2) CSCI 2132 13


