CSCIl 2132
Software Development

29-Oct-2018 (23)

Lecture 23:

Pointers and Arrays (Pointer Arithmetic)

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

CSClI 2132

Previous Lecture

e Review of matrial from Lab 7:
— Introduction to ‘make’ and Makefile

— Review of history of Version Control Systems
(rcs, cvs, Subversion, git)

— Introduction to git, github, and GitLab
e Review of pointers
e Finished statistics.c example

29-Oct-2018 (23) CSCl 2132

Using const to Protect Arguments

e Passing pointers as arguments is usually done for
function to make change to the caller variables

e Another reason: efficiency

e We may want to prevent accidental change to the
arguments

e Example:

volid f (const int *p) {
/* The function i1is not allowed
to modify xp =*/

29-Oct-2018 (23) CSCl 2132

Pointers and Arrays

e In C, pointers and arrays are closely related

e Array name is a pointer to Oth element of the array

e This is why an array argument is passed as a pointer
e Example:

int al[l0];
int xp = &al[0];

e Equivalent to:

int *xp = a;

29-Oct-2018 (23) CSCl 2132

Pointer Arithmetic: Pointer + Integer

e We can add integer to a pointer:
— lfppointsto a[i], p+Jpointsto a[i+]]

e Example:

int al[l0] = {9};

1

2

3

4: printf ("%d %d\n", al[l]l, ald]);
o W

hat is the output of this program?

29-Oct-2018 (23) CSCl 2132

Pointer Arithmetic: Subtraction

e We can subtract integer from a pointer:
— lfppointsto a[i], then p—j pointsto a[i-7]

e We can subtract pointers:
— lfppointsto a[i] and gpointsto a[j], then p—gis
j—i
e Example:

int al[l0];

int xp = &al[0];

int g = &al[d];
printf ("$d\n", p—-q);

e What is the output?

29-Oct-2018 (23) CSCl 2132

Pointer Comparison

e |f pointers p and g point to elements of the
same array a[i] and a[j] then
—iIfi < =p < g
—Ifi == J=p == g
—ifi > 3=p > g

e What if we compare pointers or subtract
pointers that do not point to the elements of the
same array?

29-Oct-2018 (23) CSCl 2132

Pointer Comparison

e |f pointers p and g point to elements of the
same array a[i] and a[j] then
—iIfi < =p < g
—Ifi == J=p == g
—ifi > 3=p > g

e What if we compare pointers or subtract
pointers that do not point to the elements of the
same array?

e Undefined behaviour

29-Oct-2018 (23) CSCl 2132

More Equivalent Statements

e a[2] = 4; and x (a+2) = 4;

e x (p+3) = 5; andp[3] = 5;
e Code:
int 1;
for (1 = 0; 1 < 10; i++)
ali] = 0;
e and

for (p = a; p < &al[l0]; p++)
*P

|
)
e

29-Oct-2018 (23) CSCl 2132

...continued

e Also equivalent loop:
for (p = a; p < atl0; pt+)
*p = 0;
e A difference between array name and pointer: cannot
change array name value (i.e., array location)
e Note: ++ and —- have higher precedence than *
e l.e., xp++ means = (p++) ratherthan (xp) ++

e Array parameters can be expressed as pointers, e.g.:
int max_array(int xa, int len);

29-Oct-2018 (23) CSCl 2132 10

Efficiency of Pointers vs. Arrays

e Pointer arithmetic has been generally more efficient

e However, modern compilers optimize subscripts to be as
efficient as pointer arithmetic

e Using subscripts requires using two variables: array
name and index

e Compilers usually do not do extensive optimization by
default

e Example: gcc -03

29-Oct-2018 (23) CSCl 2132 11

Mergesort Revisited

e Let us look at a Mergesort algorithm implemented using
pointer arithmetic

e Fill-in-the-blanks code available at:
"prof2l132/public/mergesort2.c

29-Oct-2018 (23) CSCl 2132

12

