
CSCI 2132
Software Development

Lecture 33:

Shell Scripting

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

28-Nov-2018 (33) CSCI 2132 1



Previous Lecture

• File Manipulation in C:
• Opening a file, closing a file
• Formatted I/O, character I/O
• Block reading and writing
• File positioning
• Example with file writing

28-Nov-2018 (33) CSCI 2132 2



Shell Scripting

• Unix shells provide programming-language-like
features

• Referred to as shell programming or scripting
• Useful for system administration
• No overhead in terms of compilation
• Very close to the use of command line
• Close to the Unix philosophy of breaking

projects into sub-tasks
• Reading: [Glass and Ables] Chapter 8: bash

28-Nov-2018 (33) CSCI 2132 3



Shell Program Example

• Using emacs create a file named current.sh with the
following contents:

#!/bin/bash
#Print current status
whoami
pwd
ls

• Save it, make user-executable, and execute using:

./current.sh

28-Nov-2018 (33) CSCI 2132 4



Variables

• Similar to the shell variables in the command line
• Example:

i=1
echo $i

• Some special variables:
– $0 is the pathname of the script
– $n is the n-th command arguments. We can use $1,
$2, . . . , $9, ${10}, ${11}, . . .

– $#: the number of command-line arguments, excluding
$0

28-Nov-2018 (33) CSCI 2132 5



Arithmetic Operations

• To use arithmetic expressions, use double parentheses:

(( expressions ))

• Arithmetic operators: =, +, -, ++, --, *, /, %, and **.
• ** is exponentiation
• Example:

#!/bin/bash
(( sum = $1 + $2 ))
echo the sum of $1 and $2 is $sum

28-Nov-2018 (33) CSCI 2132 6



Conditional Expressions

• The syntax for arithmetic tests:

(( expressions ))

• Operators: <=, >=, <, >, ==, !=, !, &&, and ||

• The sytax for string tests:

[ expression ]

• Note: Spaces after [ and before ] are mandatory
• Operators: == and !=

• Additional operators: -n string, and -z string (nonzero
and zero length)

28-Nov-2018 (33) CSCI 2132 7



Control Structures

• ‘If’ statement: similar to C, but different syntax:

if condition1; then
commands

elif condition2; then
commands

else
commands

fi

• The elif and else parts are optional

28-Nov-2018 (33) CSCI 2132 8



Example with ‘If’ Statement

• Example:

#!/bin/bash

if (( $# != 2 )); then
echo usage: ./add.sh num1 num2
exit

fi

(( sum = $1 + $2 ))
echo the sum of $1 and $2 is $sum

28-Nov-2018 (33) CSCI 2132 9



Example with Arithmetic for-Loop

#!/bin/bash

if (( $# != 1 )); then
echo usage: $0 num1
exit

fi

for (( i = 1; $i <= $1; i = $i + 1 )) do
f=tmpfile-$i.txt
echo "Appending file $f"
echo Updated on ‘date‘ >> $f

done

28-Nov-2018 (33) CSCI 2132 10



The Standard Bash for-Statement

• This use of for-loop is also a loop statement, but quite
different syntax than C or Java:

for var in word {word}*
do
commands

done

28-Nov-2018 (33) CSCI 2132 11



For-loop Examples

• Example:

#!/bin/bash
for file in *.txt
do
sort $file > $file.sorted

done

• Another way:

#!/bin/bash
for file in *.txt; do

sort $file > $file.sorted
done

• or

#!/bin/bash
for file in *.txt; do sort $file > $file.sorted; done

28-Nov-2018 (33) CSCI 2132 12



Alternative Solution

• Use command substitution (‘command‘)
• Backquotes can be used to replace a command result in another

command; example:

echo There are ‘ls | wc -l‘ files in the current\
directory

• Alternative solution to previous task:

#!/bin/bash
for file in ‘ls *.txt‘
do
sort $file > $file.sorted

done

28-Nov-2018 (33) CSCI 2132 13



Case Statement

• Similar to the switch statement in C or Java;
syntax:

case var in
word{|word}*)

commands
;;

...
esac

28-Nov-2018 (33) CSCI 2132 14


