
CSCI 4152/6509
Natural Language Processing

Lab 5:

Python NLTK Tutorial 1

Lab Instructor: Sigma Jahan and Tymon Wranik-Lohrenz

Faculty of Computer Science

Dalhousie University

11-Oct-2024 (5) CSCI 4152/6509 1

Lab Overview

• Introduction to Natural Language Toolkit (NLTK)
• Python quick overview;
• Lexical analysis: Word and text tokenizer;
• n-gram and collocations;
• NLTK corpora;
• Naı̈ve Bayes classifier with NLTK.

11-Oct-2024 (5) CSCI 4152/6509 2

Python Overview

• Basic syntax: Identifiers
• Lines and Indentation:
Indentation used indicate blocks of code
• Quotation: single (’), double (") and triple (’’’
or """) quotes Example:
word = ’word’
sentence = "This is a sentence."
paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

• Data types, assiging and deleting values

11-Oct-2024 (5) CSCI 4152/6509 3

Lists

print(len([1, 2, 3])) # 3 - length
print([1, 2, 3] + [4, 5, 6]) # [1, 2, 3, 4, 5, 6] - concatenation
print([’Hi!’] * 4) # [’Hi!’, ’Hi!’, ’Hi!’, ’Hi!’]

- repetition
print(3 in [1, 2, 3]) # True - checks membership
for x in [1, 2, 3]: print(x) # 1 2 3 - iteration

• Some useful built-in functions for lists: max, min, cmp,
len, list (converts tuple to list), etc.
• Some of the list-specific functions are list.append,
list.extend, list.count, etc.

11-Oct-2024 (5) CSCI 4152/6509 4

Tuples

tup1 = (’physics’, ’chemistry’, 1997, 2000);
tup2 = (1, 2, 3, 4, 5, 6, 7);
print(tup1[0]) # prints: physics
print(tup2[1:5]) # prints: [2, 3, 4, 5]

Basic tuple operations are same as with lists: length,
concatenation, repetition, membership and iteration.

Dictionaries

dict = {’Name’:’Zara’, ’Age’:7, ’Class’:’First’}
dict[’Age’] = 8 # update existing entry
dict[’School’] = "DPS School" # Add new entry
del dict[’School] # Delete existing entry

11-Oct-2024 (5) CSCI 4152/6509 5

List comprehension.
• Building sequences from other sequences
• Examples:

a_list = [1, 2, 9, 3, 0, 4]
squared_ints = [e**2 for e in a_list]

print(squared_ints) # [1, 4, 81, 9, 0, 16]

This is same as:

a_list = [1, 2, 9, 3, 0, 4]
squared_ints = []
for e in a_list:

squared_ints.append(e**2)

print(squared_ints) # [1, 4, 81, 9, 0, 16]

11-Oct-2024 (5) CSCI 4152/6509 6

Now, let us see an example with the ‘if’ statement. The example shows how to filter
out non integer types from mixed list and apply operations.

a_list = [1, ’4’, 9, ’a’, 0, 4]
squared_ints = [e**2 for e in a_list if type(e) is int]

print(squared_ints) # [1, 81, 0, 16]

However, if you want to include an ‘if-else’ statement, the arrangement looks a bit
different.

a_list = [1, ’4’, 9, ’a’, 0, 4]
squared_ints = [e**2 if type(e) is int else ’x’ for e in a_list]

print(squared_ints) # [1, ’x’, 81, ’x’, 0, 16]

11-Oct-2024 (5) CSCI 4152/6509 7

You can also generate dictionary using list comprehension:

a_list = ["I", "am", "a", "data", "scientist"]
science_list = { e:i for i, e in enumerate(a_list) }

print(science_list) # {’I’: 0, ’am’: 1, ’a’: 2, ’data’: 3,
’scientist’: 4}

. . . or list of tuples:

a_list = ["I", "am", "a", "data", "scientist"]
science_list = [(e,i) for i, e in enumerate(a_list)]

print(science_list) # [(’I’, 0), (’am’, 1), (’a’, 2),
(’data’, 3), (’scientist’, 4)]

11-Oct-2024 (5) CSCI 4152/6509 8

String Handling

Examples with string operations:

str = ’Hello World!’
print(str) # Prints complete string
print(str[0]) # Prints first character of the string
print(str[2:5]) # Prints characters starting from 3rd to 5th
print(str[2:]) # Prints string starting from 3rd character
print(str*2) # Prints string two times
print(str + "TEST") # Prints concatenated string

Other useful functions include join, split, count, capitalize, strip, upper,
lower, etc.

Example of string formatting:

print("My name is %s and age is %d!" % (’Zara’,21))

11-Oct-2024 (5) CSCI 4152/6509 9

IO Handling

• Python 2 uses the built-in function raw_input to read the standard input
• In Python 3 this function is renamed to input
• We will use Python 3 in this lab

str = input("Enter your input: ")
print("Received input is : ", str)

File Opening

To handle files in Python, you can use function open. Syntax:

file object = open(file_name [, access_mode][, buffering])

One of the useful packages for handling tsv and csv files is csv library.

11-Oct-2024 (5) CSCI 4152/6509 10

Functions

An example how to define a function in Python:

def functionname(parameters):
"function_docstring"
function_suite
return [expression]

Running your code on timberlea

• One way: python mypscript.py
• or: ./mypyscript.py
where mypscript.py looks like:

#!/local/bin/python

print("Hello World!")

11-Oct-2024 (5) CSCI 4152/6509 11

Step 1. Logging in to server timberlea

• Login to server timberlea

• Change directory to csci4152 or csci6509

• Create directory lab5 and cd to it:
mkdir lab5
cd lab5

Step 2: Python list, tuple and dictionary example

• Create a file called lab5-list_merge.py following instructions in the notes

• Submit the file lab5-list_merge.py using the submit-nlp command

Step 3: Lexical Analysis: tokenization

• Word tokenization: using method word_tokenize

• Sentence tokenization: using method sent_tokenize

• Storing words and sentences in lists

11-Oct-2024 (5) CSCI 4152/6509 12

Step 4. Stop-word Removal

#!/local/bin/python
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords # We imported auxiliary corpus

provided with NLTK

data = ("All work and no play makes jack dull boy.\n"+
"All work and no play makes jack a dull boy.")

stopWords = set(stopwords.words(’english’)) # a set of English
words = word_tokenize(data.lower()) # stopwords
wordsFiltered = []

for w in words:
if w not in stopWords:

wordsFiltered.append(w)

print(len(stopWords)) # Print the number of stopwords
print(stopWords) # Print the stopwords
print(wordsFiltered) # Print the filtered text

11-Oct-2024 (5) CSCI 4152/6509 13

Submit stop word removal.py

• Note: If you get an error message, you may need to download the
resource stopwords

• Submit the previous code as the file
lab5-stop_word_removal.py using the submit-nlp command

Step 5. Stemming
To write an example of a program using stemming, we start by defining
some words:

words = ["game","gaming","gamed","games"]

We import the Porter stemmer module:

from nltk.stem import PorterStemmer
from nltk.tokenize import sent_tokenize, word_tokenize

11-Oct-2024 (5) CSCI 4152/6509 14

and stem the words in the list as follows, where we put all components
together:

from nltk.stem import PorterStemmer
from nltk.tokenize import sent_tokenize, word_tokenize

words = ["game","gaming","gamed","games"]
ps = PorterStemmer()

for word in words:
print(ps.stem(word))

11-Oct-2024 (5) CSCI 4152/6509 15

You can do word stemming for sentences too; we just need to tokenize
them first:

from nltk.stem import PorterStemmer
from nltk.tokenize import sent_tokenize, word_tokenize

ps = PorterStemmer()

sentence = "gaming, the gamers play games"
words = word_tokenize(sentence)

for word in words:
print(word + ":" + ps.stem(word))

There are more stemming algorithms, but the Porter stemmer is the
most popular.

11-Oct-2024 (5) CSCI 4152/6509 16

Step 6. N-grams

Word n-grams

from nltk import ngrams
sentence = "This is my sentence and I want to ngramize it."
n = 6
w_6grams = ngrams(sentence.split(), n)
for grams in w_6grams:

print(grams)

Character n-grams

from nltk import ngrams
sentence = "This is my sentence and I want to ngramize it."
n = 6
c_6grams = ngrams(sentence, n)
for grams in c_6grams:

print(’’.join(grams))

11-Oct-2024 (5) CSCI 4152/6509 17

Step 7. Exploring Corpora

• Let us explore some text stats

#!/local/bin/python

from nltk import FreqDist
from nltk.tokenize import word_tokenize

data = ("All work and no play makes jack dull boy.\n"+
"All work and no play makes jack a dull boy.")

words = word_tokenize(data)

fdist1 = FreqDist(words)

print(fdist1.most_common(2)) # Prints two most common tokens
print(fdist1.hapaxes()) # Prints tokens with frequency 1

11-Oct-2024 (5) CSCI 4152/6509 18

Fill in the comments with answers:

lab5-explore_corpus.py
from nltk.corpus import gutenberg
from nltk import FreqDist

Count each token in austen-persuasion.txt of the Gutenberg collection
list_of_words = gutenberg.words("austen-persuasion.txt")
fd = FreqDist(list_of_words) # Frequency distribution object

print("Total number of tokens: " + str(fd.N())) # <insert_comment_how_many>
print("Number of unique tokens: " + str(fd.B())) # <insert_comment_how_many>
print("Top 10 tokens:") # <insert_comment_which_is_3rd>
for token, freq in fd.most_common(10):
print(token + "\t" + str(freq))

To find out more about FreqDist refer to http://www.nltk.org/book/ch01.html section 3.1.
• Submit lab5-explore_corpus.py

11-Oct-2024 (5) CSCI 4152/6509 19

Step 8. Document Classification

#!/local/bin/python

from nltk import FreqDist, NaiveBayesClassifier
from nltk.corpus import movie_reviews
from nltk.classify import accuracy
import random

documents = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]

random.shuffle(documents) # This line shuffles the order of the documents

all_words = FreqDist(w.lower() for w in movie_reviews.words())
word_features = list(all_words)[:2000]

def document_features(document):
document_words = set(document)
features = {}
for word in word_features:

features[’contains({})’.format(word)] = (word in document_words)
return features

featuresets = [(document_features(d), c) for (d,c) in documents]

11-Oct-2024 (5) CSCI 4152/6509 20

train_set, test_set = featuresets[100:], featuresets[:100] # Split
data to train and test set

classifier = NaiveBayesClassifier.train(train_set)

print(accuracy(classifier, test_set))

<answer_area>
<answer_area>
<answer_area>

• Submit the file lab5-movie_rev_classifier.py using the submit-nlp command

This is the end of Lab 5.

11-Oct-2024 (5) CSCI 4152/6509 21

