
Natural Language Processing
CSCI 4152/6509 — Lecture 7
Elements of Information Retrieval and
Text Mining

Instructors: Vlado Keselj
Time and date: 16:05 – 17:25, 25-Sep-2024
Location: Carleton Tupper Building Theatre C
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Previous Lecture

Elements of Morphology (continued):

I Lemmatization, Morphological Processes

Word Counting and Zipf’s Law

N-grams definition

Extracting and Analyzing n-grams in Perl
Elements of Information Retrieval

I Vector space model
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Side Note: Lucene and IR Book

Lucene search engine

http://lucene.apache.org

Open-source, written in Java

Uses the vector space model

Another interesting link: Introduction to IR on-line
book covers well text classification:
http:

//nlp.stanford.edu/IR-book/html/htmledition/irbook.html
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IR Evaluation: Precision and Recall

Precision is the percentage of true positives out of
all returned documents; i.e.,

P =
TP

TP + FP

Recall is the percentage of true positives out of all
relevant documents in the collection; i.e.,

R =
TP

TP + FN
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Precision and Recall: Venn Diagram
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F-measure

F-measure is a weighted harmonic mean between
Precision and Recall:

F =
(β2 + 1)PR

β2P +R

We usually set β = 1, in which case we have:

F =
2PR

P +R
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Recall-Precision Curve

A more appropriate way to evaluate a ranked list of
relevant documents is the Recall-Precision Curve

Connects (recall, precision) points for the sets of 1, 2,
. . . most relevant documents on the list

It typically looks as follows:
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Recall-Precision Curve Example

Results returned by a search engine (8 rel.doc.total):
1. relevant
2. relevant
3. relevant
4. not relevant
5. relevant
6. not relevant
7. relevant
8. not relevant
9. not relevant
10. relevant
11. not relevant
12. not relevant
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Task 1: Precision, Recall and F-measure

Assuming that the total number of relevant

documents in the collection is 8, calculate

precision, recall, and F-measure (β = 1) for

the returned 12 results.
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Task 2: Recall-Precision Curve

Task: Draw the recall-precision curve for these results
First step: Form sets of n initial documents, and
look at their relevance:

I Set 1: {R} (R = 0.125, P = 1)
I Set 2: {R,R} (R = 0.25, P = 1)
I Set 3: {R,R,R}, (R = 0.375, P = 1)
I Set 4: {R,R,R,NR}, (R = 0.375, P = 0.75)
I Set 5: {R,R,R,NR, R}, (R = 0.5, P = 0.8)
I . . . etc.
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Recall-Precision Curve

0

1

P

1
R

1 2 3

4

5

6

7

8

9

10

11

12

CSCI 4152/6509, Vlado Keselj Lecture 7 11 / 31



Task 3: Interpolated Recall-Precision Curve

Task: Draw interpolated Recall-Precision curve

Formula:

IntPrec(r) = max
k,R(k)≥r

P (k)

Based on the previous Task:
0 ≤ r ≤ R4 =

3
8 = 0.375⇒ IntPrec(r) = 1

R4 < r ≤ R6 =
4
8 = 0.5⇒ IntPrec(r) = 0.8

R6 < r ≤ R9 =
5
8 = 0.625⇒ IntPrec(r) = 5/7 ≈

0.714285714
R9 < r ≤ R12 =

6
8 = 0.75⇒ IntPrec(r) = 0.6
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Interpolated Recall-Precision Curve
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Interpolated R-P Curve at 11 Standard Levels
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Some Other Similar Measures

Fallout

Fallout =
FP

FP + TN
Specificity

Specificity =
TN

TN + FP

Sensitivity

Sensitivity =
TP

TP + FN
(= R)

Sensitivity and Specificity: useful in classification and
contexts such as medical tests
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Some Text Mining Tasks

Text Classification

Text Clustering

Information Extraction
And some new and less prominent tasks:

I Text Visualization
I Filtering tasks, Event Detection
I Terminology Extraction
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Text Classification

It is also known as Text Categorization.

Additional reading: Manning and Schütze, Ch 16:
Text Categorization

Problem definition:
Classify a document into a class (category) of
documents

Typical approach:
Use of Machine Learning to learn classification model
from previously labeled documents

An example of supervised learning
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Types of Text Classification

topic categorization

sentiment classification

authorship attribution and plagiarism detection

authorship profiling (e.g., age and gender detection)

spam detection and e-mail classification

encoding and language identification

automatic essay grading

More specialized example: dementia detection using
spontaneous speech
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Creating Text Classifiers

Can be created manually
I typically rule-based classifier
I example: detect or count occurrences of some

words, phrases, or strings
Another approach: make programs that learn to
classify

I In other words, classifiers are generated based
on labeled data

I supervised learning
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Evaluation Measures for Text Classification

Contingency table (confusion matrix) and Accuracy

Example (classes A, B, and C):

Model
classification

Gold standard
A B C

A 5 1 1 7
B 3 10 2 15
C 0 2 10 12

8 13 13 34

Accuracy: percentage of correct classifications; in the
example, = 25/34 ≈ 0.7353 = 73.53%
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Per class: Precision, Recall, and F-measure

For each class: Yes = in class, No = not in class
Yes is correct No is correct

Yes assigned a b
No assigned c d

precision ( a
a+b), recall ( a

a+c), fallout ( b
b+d), F-measure:

F =
(β2 + 1)PR

β2P +R

If β = 1⇒ Precision and Recall treated equally
macro-averaging (equal weight to each class) and
micro-averaging (equal weight to each object)
(2×2 contingency tables vs. one large contingency
table)

CSCI 4152/6509, Vlado Keselj Lecture 7 21 / 31



Example: Classification Results

System
response

Gold standard
A1 A2 A3

A1 5 1 1 7
A2 3 10 2 15
A3 0 2 10 12

8 13 13 34
Or, we can create contingency tables for each class separately:

Gold standard
A1 not A1

A1 5 2 7
not A1 3 24 27

8 26 34

Gold standard
A2 not A2

A2 10 5 15
not A2 3 16 19

13 21 34
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Gold standard
A3 not A3

A3 10 2 12
not A3 3 19 22

13 21 34
The overall accuracy can be calculated using the overall table;

Accuracy =
5 + 10 + 10

34

Per-class precisions are:

PA1 =
5

7
PA2 =

10

15
PA3 =

10

12

Per-class recalls are:

RA1 =
5

8
RA2 =

10

13
RA3 =

10

13
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Macro-averaged precision, recall, and F-measure are:

Pmacro =
5/7 + 10/15 + 10/12

3
Rmacro =

5/8 + 10/13 + 10/13

3

Fmacro =
2 · Pmacro ·Rmacro

Pmacro +Rmacro
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To calculate micro-averaged precision, recall, and F-measure, we
calculate cumulative per-class table:

Gold standard
A not A

A 25 9 34
not A 9 59 68

34 68 102
and then we calculate the micro-averaged measures:

Pmicro =
25

34
Rmicro =

25

34
Fmicro =

2 · Pmicro ·Rmicro

Pmicro +Rmicro
=

25

34
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Evaluation Methods for Classification

General issues in classification
I Underfitting and Overfitting

Example with polynomial-based function learning
I Underfitting and Overfitting
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Evaluation Methods for Text Classifiers

Training Error

Train and Test

N-fold Cross-validation
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Train and Test

Labeled data is divided into training and testing data

Typically training data size : testing data size = 9 :
1, sometimes 2 : 1

training data
training classifier testing data

evaluation
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N-fold Cross-Validation

classifier 1
fold 3

fold 2

. . .

fold 1

fold n

fold n−1
evaluation

training

fold n−1

fold 3

fold 2

evaluation

training

fold n

fold 1

. . .

fold 3

fold 2

. . .

fold 1

evaluation

training

fold n

fold n−1

classifier 2

classifier n. . .
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Text Clustering

Text clustering is an interesting text mining task

It is relevant to the course and a clustering task can
be a project topic

Since it is covered in some other courses, we will not
cover it in much detail here

Some notes are provided for your information
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Similarity-based Text Classification

Aggregate training text for each class into a profile

Aggregate testing text into another profile

Classify according to profile similarity
If a profile is a vector, we can use different similarity
measures; e.g.,

I cosine similarity,
I Euclidean similarity, or
I some other type of vector similarity

CSCI 4152/6509, Vlado Keselj Lecture 7 31 / 31


