Natural Language Processing CSCI 4152/6509 — Lecture 9 P0 Topics Discussion; Introduction to Probabilistic Modeling

Instructors: Vlado Keselj

Time and date: 16:05 – 17:25, 7-Oct-2023

Location: Carleton Tupper Building Theatre C

Previous Lecture

- CNG classification method
- Edit distance:
 - introduction, properties, dynamic programming approach, example, algorithm

P0 Topics Discussion

- Discussion of individual projects as proposed in P0 submissions
- Projects discussed: P-01, P-03, P-04, P-05, P-06

Part III: Probabilistic Approach to NLP

Logical versus Plausible Reasoning

- As a part of AI (Artificial Intelligence), NLP follows two main approaches to *computer reasoning*, or *computer inference*:
- 1. logical reasoning
 - known also as classical, symbolic, knowledge-based Al
 - monotonic: once conclusion drawn, never retracted
 - certain: conclusions certain, given assumptions
- 2. plausible reasoning
 - examples: probabilistic, fuzzy logic, neural networks
 - non-monotonic
 - uncertain

Plausible Reasoning

- How to combine ambiguous, incomplete, and contradicting evidence to draw reasonable conclusions?
- Typical approach: make plausible inference of some hidden structure from observations
- Examples:

Observations (input)		Hidden Structure (output)
symptoms	\rightarrow	illness
pixel matrix	\rightarrow	object, relations
speech signal	\rightarrow	phonemes, words
word sequence	\rightarrow	meaning
sentence	\rightarrow	parse tree
word sequence	\rightarrow	POS tags, names, entities
words in e-mail Subject:	\rightarrow	Is message spam? Yes/No
text	\rightarrow	text category (class)

Probabilistic NLP as a Plausible Reasoning Approach

- Regular expressions and finite automata are example of logical or knowledge-based approach to NLP
- Plausible approaches to NLP:
 - Probabilistic: use of Theory of Probability, also known as stochastic or statistical NLP
 - Alternative plausible approaches, examples:
 - 2. neural networks,
 - 3. kernel methods,
 - 4. fuzzy logic, fuzzy sets,
 - 5. Dempster-Shafer theory
 - 6. rough sets,
 - 7. default logic, ...

Review of Basics of Probability Theory

- You should have this background from previous courses; this is just a review,
 - discussed a bit in the textbook: [JM] 5.5, and [MS] 2.1
- Simple event or basic outcome
 - e.g., rolling a die, choosing a letter
- ullet Event space: the set of all outcomes, usually denoted Ω
- Event or outcome is a set of simple events or basic outcomes
- In other words event is any subset of Ω ; i.e., $A \subseteq \Omega$
- Each event is associated with a probability, which is a number between 0 and 1, inclusive: $0 \le P(A) \le 1$

Probability Examples

- P("rolling a 6 with a die") = 1/6
- Choosing a letter of English alphabet:
 - If we choose uniformly: $P('a') = 1/26 \approx 0.04$
 - Choosing from a text: $P(\text{`a'}) \approx 0.08$
 - Remember our output from "Tom Sawyer":

```
35697 0.1204 e
28897 0.0974 t
23528 0.0793 a
23264 0.0784 o
20200 0.0681 n
```

Probability Axioms

- (Nonnegativity) $P(A) \ge 0$, for any event A
- (Additivity) for disjoint events A and B, i.e., if $A, B \subset \Omega$ and $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$ or, more generally, $P(A_1 \cup A_2 \cup \ldots) = P(A_1) + P(A_2) + \ldots$
- (Normalization) $P(\Omega) = 1$, where Ω is the entire sample space.
- Some consequences of the above axioms are: $P(\emptyset) = 0$ and $P(\Omega A) = 1 P(A)$

Independent and Dependent Events

- Independent events A and B (definition): $P(A, B) = P(A) \cdot P(B)$
- Use of comma in: $P(A, B) = P(A \cap B)$
- Example: choosing two letters in text
 - ① Choosing independently: P('t') = 0.1, P('h') = 0.07, P('t', 'h') = 0.007
 - Choosing two consecutive letters (dependent events): $P(\mbox{'t'},\mbox{'h'}) = 0.04$

Conditional Probability

Conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

ullet Expressing independency using conditional probability Two events A are B are independent if and only if:

$$P(A|B) = P(A)$$

This is an alternative definition of independent events.

Annotation with More Events

- There is a bit of flexibility in using notation; e.g.,
- $P(A, B, C) = P(A \cap B \cap C)$
- $P(A|B,C) = P(A|B \cap C)$
- $P(A, B, C|D, E, F) = P(A \cap B \cap C|D \cap E \cap F)$
- and so on.
- Three independent events: P(A, B, C) = P(A)P(B)P(C)
- Conditionally independent events

$$P(A, B|C) = P(A|C) \cdot P(B|C)$$

Bayes' Theorem

Bayes' theorem (one form):

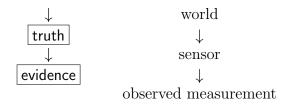
$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

• The second form is based on breaking the set B into disjoint sets $B = A_1 \cup A_2 \cup \ldots$

$$P(A_i|B) = \frac{P(B|A_i) \cdot P(A_i)}{P(B)} = \frac{P(B|A_i) \cdot P(A_i)}{\sum_i P(B|A_i)P(A_i)}$$

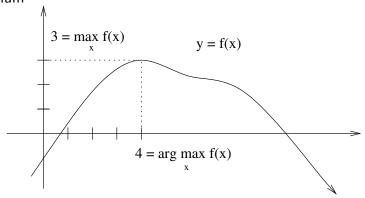
Bayesian Inference and Generative Models

- We will use Bayesian Inference on Generative Models
- Generative Models, also known as Forward Generative Models
- One way of representing knowledge with a probabilistic model



Notation Remark: max and argmax

- max is the maximum value of a function
- arg max is an argument value for which function achieves the maximum



Bayesian Inference: Using Bayes' Theorem

Bayesian inference is a principle of combining evidence

$$\begin{array}{lll} {\rm conclusion} & = & {\rm arg\ max} \\ & {\rm possible\ truth} \end{array} P({\rm possible\ truth}|{\rm evidence}) \\ & = & {\rm arg\ max} \\ & {\rm possible\ truth} \end{array} \frac{P({\rm evidence}|{\rm possible\ truth})P({\rm possible\ truth})}{P({\rm evidence})} \\ & = & {\rm arg\ max} \\ & {\rm possible\ truth} \end{array} P({\rm evidence}|{\rm possible\ truth})P({\rm possible\ truth}) \end{array}$$

application to speech recognition: acoustic model and language model

Bayesian Inference: Speech Recognition Example

- evidence → sound
- lacktriangle possible truth \rightarrow utterance (words spoken)
- lacktriangle our best guess about utterance o utterance*

```
 \begin{array}{lll} \text{utterance}^* &=& \underset{\text{all utterances}}{\operatorname{arg \ max}} & P(\text{utterance}|\text{sound}) \\ &=& \underset{\text{all utterances}}{\operatorname{arg \ max}} & \frac{P(\text{sound}|\text{utterance})P(\text{utterance})}{P(\text{sound})} \\ &=& \underset{\text{utterance}}{\operatorname{arg \ max}} & P(\text{sound}|\text{utterance})P(\text{utterance}) \\ &=& \underset{\text{utterance}}{\operatorname{utterance}} \end{array}
```

Probabilistic Modeling

- How do we create and use a probabilistic model?
- Model elements:
 - Random variables
 - Model configuration (Random configuration)
 - Variable dependencies
 - Model parameters
- Computational tasks

Random Variables

- Random variable V, defining an event as V=x for some value x from a domain of values D; i.e., $x \in D$
- V=x is usually not a **basic** event due to having more variables
- An event with two random variables: $V_1 = x_1, V_2 = x_2$
- Multiple random variables: $\mathbf{V} = (V_1, V_2, ..., V_n)$

Model Configuration (Random Configuration)

• Full Configuration: If a model has n random variables, then a Full Model Configuration is an assignment of all the variables:

$$V_1 = x_1, V_2 = x_2, \dots, V_n = x_n$$

 Partial configuration: only some variables are assigned, e.g.:

$$V_1 = x_1, V_2 = x_2, \dots, V_k = x_k \quad (k < n)$$

Probabilistic Modeling in NLP

Probabilistic Modeling in NLP is a general framework for modeling NLP problems using random variables, random configurations, and an effective ways to reason about probabilities of these configurations.

Variable Independence and Dependence

- Random variables V_1 and V_2 are independent if $P(V_1\!=\!x_1,V_2\!=\!x_2)=P(V_1\!=\!x_1)P(V_2\!=\!x_2)$ for all x_1,x_2
- or expressed in a different way: $P(V_1 = x_1 | V_2 = x_2) = P(V_1 = x_1)$ for all x_1, x_2, x_3 .
- Random variables V_1 and V_2 are conditionally independent given V_3 if, for all x_1, x_2, x_3 : $P(V_1 = x_1, V_2 = x_2 | V_3 = x_3) = P(V_1 = x_1 | V_3 = x_3) P(V_2 = x_2 | V_3 = x_3)$
- or $P(V_1 = x_1 | V_2 = x_2, V_3 = x_3) = P(V_1 = x_1 | V_3 = x_3)$

Computational Tasks in Probabilistic Modeling

- 1. Evaluation: compute probability of a complete configuration
- 2. Simulation: generate random configurations
- 3. Inference: has the following sub-tasks:
 - 3.a Marginalization: computing probability of a partial configuration,
 - Conditioning: computing conditional probability of a completion given an observation,
 - 3.c Completion: finding the most probable completion, given an observation
- 4. Learning: learning parameters of a model from data.

Illustrative Example: Spam Detection

- the problem of spam detection
- a probabilistic model for spam detection; random variables:
 - Caps = 'Y' if the message subject line does not contain lowercase letter, 'N' otherwise,
 - Free = 'Y' if the word 'free' appears in the message subject line (letter case is ignored), 'N' otherwise, and
 - Spam = 'Y' if the message is spam, and 'N' otherwise.
- one random configuration represents one e-mail message

Random Sample

Data based on sample of 100 email messages

Free	Caps	Spam	Number of messages
Y	Υ	Υ	20
Υ	Υ	N	1
Υ	N	Υ	5
Υ	N	N	0
N	Υ	Υ	20
N	Υ	N	3
N	N	Υ	2
N	N	N	49
Total:			100

What are examples of computational tasks in this example?