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CSCI 4152/6509 — Natural Language Processing

Lecture 11: Naı̈ve Bayes Model; P0 Topics Discussion (3)

Location: Carleton Tupper Building Theatre C Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lectures

– Joint distribution model
– Spam example

– Fully independent model
– P0 Discussion (2): P-02

3.b Conditioning in Fully Independent Model

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

=
P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

P(V1=x1, . . . , Vk=xk)

=
P(V1=x1) · · ·P(Vk=xk)P(Vk+1=yk+1) · · ·P(Vn=yn)

P(V1=x1) · · ·P(Vk=xk)

= P(Vk+1=yk+1) · · ·P(Vn=yn)

Only have to lookup and multiply n− k numbers.

3.c Completion in Fully Independent Model

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(Vk+1=yk+1) · · ·P(Vn=yn)

= arg max
yk+1

P(Vk+1=yk+1)

[
arg max

yk+2

· · ·
[

arg max
yn

P(Vn=yn)

]]
(Since max and arg max distributes over product just like sum.
That is, maxi axi = amaxi xi (for a, xi ≥ 0)
just like

∑
i axi = a

∑
i xi.)

=

[
arg max

yk+1

P(Vk+1=yk+1)

]
· · ·
[

arg max
yn

P(Vn=yn)

]

=

[
arg max

yk+1

pk+1,yk+1

]
· · ·
[

arg max
yn

pn,yn

]

Only have to search through m possible completions for each of the n− k variables separately.
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Joint Distribution Model vs. Fully Independent Model

The Fully Independent Model addresses the previous issues with the joint distribution model, but it suffers from a
too strong assumption and too little structure, so it usually does not model accurately the real relationships among
variables.

Structured probability models are a compromise solution between previous two models. Structured probability
models are more efficient than the joint distribution model and they address the issue of the sparse training data, and
in the same time they model important dependencies among random variables.

One of the simplest models of this kind is the Naı̈ve Bayes Model.

12 Naı̈ve Bayes Classification Model
Slide notes:

Naı̈ve Bayes Classification Model
– Fully independent model is not useful in classification: class

variable should be dependent on other variables
– A solution: make class variable dependent, but everything else

independent
– Let V1 be the class variable
– V2, V3, . . . , Vn are input variables (features)
– Classification can be expressed as

arg max
x1

P(V1 = x1|V2 = x2, V3 = x3, . . . , Vn = xn)

In the Naı̈ve Bayes model we assume that all variables are independent except one distinguished variable, which is
usually called the class variable since the model is used for classification. The other variables are called features
or attributes. Since in the classification task the features are used as input and the class variable produces the
classification result or output, we also call the feature variables the input variables and the class variable the output
variable.

If we assume that the variable V1 is the output variable, and the variables V2, V3, . . . , Vn are the input variables,
then in the classification problem can be expressed as a conditional probability computation problem, or completion
problem of the probability:

arg max
x1

P(V1 = x1|V2 = x2, V3 = x3, . . . , Vn = xn)

or
arg max

V1

P(V1|V2, V3, . . . , Vn)

for short. After applying Bayes theorem we obtain:

P(V1|V2, V3, . . . , Vn) =
P(V2, V3, . . . , Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)

Now, we use the Naı̈ve Bayes independence assumption, which is that the variables V2, V3, . . . , Vn are conditionally
independent given V1. Then, the above equation becomes:

P(V1|V2, V3, . . . , Vn) =
P(V2, V3, . . . , Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)

=
P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)



CSCI 4152/6509 Lecture 11 p.3

The conditional probabilities P(Vi|V1) for i ∈ {2 . . . n} can be efficiently computed and stored, and they eliminate
the sparse data problem. To be clear about the independence assumption that we made, let us repeat it here, the
Naı̈ve Bayes Independence Assumption (1) can be stated as follows:

P(V2, V3, . . . , Vn|V1) = P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1)

If we multiply both sides with P(V1) and use definition of conditional probability, we the second way of expressing
the Naı̈ve Bayes Independence Assumption (2) is:

P(V1, V2, V3, . . . , Vn) = P(V1) · P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1)

Graphical Representation: Naı̈ve Bayes Model

Assumption:

P(V1, V2, V3, . . . , Vn) = P(V1) · P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1)

...

V1

V2 V3 Vn

Naı̈ve Bayes Classification

– The classification formula becomes

arg max
x1

P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)
=

arg max
x1

P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1) · P(V1)

– To calculate marginal probability in the denominator we use

P(V2, V3, . . . , Vn) =
∑
V1

P(V1, V2, V3, . . . , Vn) =

∑
V1

P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1) · P(V1)

Another way of deriving the Naı̈ve Bayes assumption is the following:

P(V1 = x1, . . . , Vn = xn) = (3)
= P(V1 = x1)P(V2 = x2|V1 = x1)P(V3 = x3|V1 = x1, V2 = x2) . . . (4)

P(Vn = xn|V1 = x1, V2 = x2, . . . , Vn−1 = xn−1) (5)
NB
≈ P(V1 = x1)P(V2 = x2|V1 = x1)P(V3 = x3|V1 = x1) . . . (6)

P(Vn = xn|V1 = x1) (7)

Equality (3,4) holds always, and equality (5,6) is the Naı̈ve Bayes assumption.
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Summary of the Naı̈ve Bayes Model

Naive Bayes assumption

class variabletext features

Naive Bayes Model is a set of tables

Second way of expression Naive Bayes Assumption:

P(V1,V2,V3,...,Vn) = P(V1) P(V2,V3,..,Vn|V1) =

    = P(V1) P(V2|V1) P(V3|V1) ... P(Vn|V1)

V1

(CPT −− Conditional Probability Tables)

V2V1P(V1) P(V2|V1) V1 Vn P(Vn|V1)

= P(V2|V1) P(V3|V1) ... P(Vn|V1)P(V2,V3,...Vn|V1)

Example: A Naı̈ve Bayes Model for Spam Detection

In our spam detection example, the Naı̈ve Bayes assumption is:

P(Free,Caps, Spam) = P(Spam) · P(Free|Spam) · P(Caps|Spam)

Hence, in order to create a Naı̈ve Bayes model from our training data:

Free Caps Spam Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

we calculate the following tables:

Spam P(Spam)

Y 20+5+20+2
100 = 0.47

N 1+0+3+49
100 = 0.53

,

Caps Spam P(Caps|Spam)

Y Y 20+20
20+5+20+2 ≈ 0.8511

Y N 1+3
1+0+3+49 ≈ 0.0755

N Y 5+2
20+5+20+2 ≈ 0.1489

N N 0+49
1+0+3+49 ≈ 0.9245

, and

Free Spam P(Free|Spam)

Y Y 20+5
20+5+20+2 ≈ 0.5319

Y N 1+0
1+0+3+49 ≈ 0.0189

N Y 20+2
20+5+20+2 ≈ 0.4681

N N 3+49
1+0+3+49 ≈ 0.9811

.
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The probability of a configuration in this model is calculated in the following way:

P(Free = Y,Caps = N, Spam = N) = (8)
= P(Spam = N) · P(Caps = N |Spam = N) · P(Free = Y |Spam = N)

≈ 0.53 · 0.9245 · 0.0189 ≈ 0.0093

12.1 Computational Tasks in the Naı̈ve Bayes Model

We will cover the computational tasks in more details within the Bayesian Network in general.

1. Evaluation

The probability of a complete configuration is calculated using the Naı̈ve Bayes assumption and table lookups. The
formula (8) illustrates probability evaluation of a complete configuration: P(Free = Y,Caps = N, Spam = N)

This example illustrates the fact that the Naı̈ve Bayes model is less amenable to the sparse date problem than the
joint distribution problem, in which the probability of this same configuration was estimated to be 0.

2. Simulation

Configurations are sampled by first sampling the output variable based on its table, and then the input variables
using the corresponding conditional tables.

3. Inference

3.a) Marginalization. If the partial configuration includes the output variable, it can be shown that the marginal
probability can be calculated using the following formula:

P(V1 = x1, . . . , Vk = xk) =

P(V1 = x1)P(V2 = x2|V1 = x1)P(V3 = x3|V1 = x1) . . .

P(Vk = xk|V1 = x1)

3.b) Conditioning. Example:

P(S = N |F = Y,C = N) =
P(S = N,F = Y,C = N)

P(F = Y,C = N)

Using Naı̈ve Bayes assumption:

P(S = N,F = Y,C = N) =

= P(S = N)P(F = Y |S = N)P(C = N |S = N)

= 0.53 · 0.9245 · 0.0189 ≈ 0.0093
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P(F = Y,C = N) = (by definition)
= P(S = Y, F = Y,C = N) + P(S = N,F = Y,C = N)

≈ P(S = Y )P(F = Y |S = Y )P(C = N |S = Y ) + 0.0093

= 0.47 · 0.5319 · 0.1489 + 0.0093

≈ 0.0465

Finally,

P(S = N |F = Y,C = N) =
0.0093

0.0465
≈ 0.2

3.c) Completion in the Naı̈ve Bayes Model

Slide notes:

3.c) Completion in the NB Model
– Classification is the completion task:

arg max
s∈{Y,N}

P(S = s|F = Y,C = N)

– It works out that we calculate:

P(S=Y, F =Y,C=N) = P(S) · P(F |S) · P(C|S)

and

P(S=N,F =Y,C=N) = P(S) · P(F |S) · P(C|S)

and choose the larger value.

Example:

arg max
s∈{Y,N}

P(S = s|F = Y,C = N)
by definition

= arg max
s

P(S = s, F = Y,C = N)

P(F = Y,C = N)

P(F = Y,C = N) does not depend on s, hence

= arg max
s

P(S = s, F = Y,C = N)

and by using Naı̈ve Bayes assumption)

= arg max
s

P(S = s)P(F = Y |S = s)P(C = N |S = s)︸ ︷︷ ︸
A(s)

For s = Y A(s = Y ) ≈ 0.0465, and for s = N A(s = N) ≈ 0.0093; hence

arg max
s

A(s) = Y
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Learning

Maximum Likelihood Estimation: The parameters are estimated using a corpus.

12.2 Number of Parameters

A Naı̈ve Bayes model with n variables V1,. . .Vn is described with tables P(V1), P(V2|V1), P(V3|V1), . . . , P(Vn|V1).
These tables have constraints since each probability distribution must sum up to 1. If we assume that each variable
can take one of m distinct values, then the number of parameters and constraints in required tables are:

parameters constraints
table P(V1) m 1
table P(V2|V1) m2 m
table P(V3|V1) m2 m
...

...
...

table P(Vn|V1) m2 m
sum m+ (n− 1)m2 1 + (n− 1)m

Hence, the number of free parameters is m+ (n− 1)m2 −

1− (n− 1)m = O(m2n), which is not very large since the joint distribution model requires O(mn) parameters.

Pros and Cons of the Naı̈ve Bayes Model

Some advantages (pros) of the Naı̈ve Bayes Model are:
Efficiency: It is a relatively efficient method, with good running-time complexity for inference and small memory
size.
No sparse data problem: Since the number of parameters is relatively small, there is usually sufficient data to train
all parameters, and smoothing is relatively easy.
Performance: Even though it has a very strong and unrealistic independence assumption, the model frequently
shows surprisingly good classification performance.

Some disadvantages (cons) of the Naı̈ve Bayes Model are:
Too strong independence assumption: The strong independence assumption often affects performance for many
domains. In other words, the model is too simplistic.
Only one “output” variable: The model is designed as a classification problem; i.e., it contains only one hidden,
or output, variable; which value can be inferred. Many problems require that we infer the value of multiple variables,
and the only way to apply Naı̈ve Bayes model to those problems is to build separate models for all hidden variables.
In that case we would not capture any inter-dependencies among those variables.

Additional Notes on Naı̈ve Bayes Model

– Text classification: how do we choose features?
– Two options:

– Bernoulli Naı̈ve Bayes — binary variables for each word
– Multinomial Naı̈ve Bayes — variable for each word position

– Zero-probability problem
– Smoothing using +1 or similar addition (Laplace smoothing)

The Bernoulli Naı̈ve Bayes model uses a variable for each distinct word in the vocabulary, with values 1 if the word
is present, or 0 if not. Training is done on per-document basis. The name comes from the Bernoulli distribution as
defined in the probability theory, which is distribution of a random variable having value 1 with a probability p and
0 with the probability q = 1− p. This is the distribution we use to model probability that a word is in a document
of a given class.
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The Multinomial Naı̈ve Bayes model uses a variable for each word position, and the value of the variable is the
actual word. All conditional probabilities for these variables are the same, but they are collected in one large table.
The model is trained on one ‘mega-document’; i.e., a document with concatenated all documents of a class. The
model is named after the Multinomial distribution in the probability theory, which models the outcome of n repeated
trials, where each trial can have one of k different results, with probabilities p1, p2, . . . , pk. In the Multinomial
Naı̈ve Bayes model, n is the length of a text, and individual trials are word positions, where words are taken from a
vocabulary of size k.

12.3 Spam Example Summary

Let us take a look at a summary of the Spam Example for the three discussed models: Joint Distribution, Fully
Independent, and Naı̈ve Bayes model. In all three models, the initial training data was the same, represented in the
following table:

Free Caps Spam Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

The Joint Distribution Model is represented using a joint probability distribution table, learned from the training
data as:

Free Caps Spam Number of messages p
Y Y Y 20 0.20
Y Y N 1 0.01
Y N Y 5 0.05
Y N N 0 0.00
N Y Y 20 0.20
N Y N 3 0.03
N N Y 2 0.02
N N N 49 0.49

Total: 100 1.00

As an example, the conditional probability P(Spam = Y |Free = Y,Caps = N) would be evaluated as:

P(Spam = Y |Free = Y,Caps = N) =

=
P(Spam = Y,Free = Y,Caps = N)

P(Free = Y,Caps = N)

=
P(Spam = Y,Free = Y,Caps = N)

P(Spam = Y,Free = Y,Caps = N) + P(Spam = N,Free = Y,Caps = N)

=
0.05

0.05 + 0.00
= 1.00

The Fully Independent Model is represented using a set of independent probability tables for all variables, learned
from the training data as:
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Free P(Free)
Y 20+1+5+0

100 = 0.26

N 20+3+2+49
100 = 0.74

,
Caps P(Caps)

Y 20+1+20+3
100 = 0.44

N 5+0+2+49
100 = 0.56

and
Spam P(Spam)

Y 20+5+20+2
100 = 0.47

N 1+0+3+49
100 = 0.53

Using the same example, the conditional probability P(Spam = Y |Free = Y,Caps = N) would be evaluated as:

P(Spam = Y |Free = Y,Caps = N) =

=
P(Spam = Y,Free = Y,Caps = N)

P(Free = Y,Caps = N)

=
P(Spam = Y ) · P(Free = Y ) · P(Caps = N)

P(Free = Y ) · P(Caps = N)

= P(Spam = Y ) = 0.47

The Naı̈ve Bayes Model is represented using a set of conditional probability tables, learned from the training data
as:

Spam P(Spam)

Y 20+5+20+2
100 = 0.47

N 1+0+3+49
100 = 0.53

Caps Spam P(Caps|Spam)

Y Y 20+20
20+5+20+2 ≈ 0.8511

Y N 1+3
1+0+3+49 ≈ 0.0755

N Y 5+2
20+5+20+2 ≈ 0.1489

N N 0+49
1+0+3+49 ≈ 0.9245

Free Spam P(Free|Spam)

Y Y 20+5
20+5+20+2 ≈ 0.5319

Y N 1+0
1+0+3+49 ≈ 0.0189

N Y 20+2
20+5+20+2 ≈ 0.4681

N N 3+49
1+0+3+49 ≈ 0.9811

.

Using the same example, the conditional probability P(Spam = Y |Free = Y,Caps = N) would be evaluated as:

P(Spam = Y |Free = Y,Caps = N) =

=
P(Spam = Y,Free = Y,Caps = N)

P(Free = Y,Caps = N)

=
P(Spam = Y,Free = Y,Caps = N)

P(Spam = Y,Free = Y,Caps = N) + P(Spam = N,Free = Y,Caps = N)

We first calculate:

P(Spam = Y,Free = Y,Caps = N) =

= P(Spam = Y ) · P(Free = Y |Spam = Y ) · P(Caps = N |Spam = Y )

= 0.47 · 0.5319 · 0.1489 ≈ 0.047248677

and

P(Spam = N,Free = Y,Caps = N) =

= P(Spam = N) · P(Free = Y |Spam = N) · P(Caps = N |Spam = N)

= 0.53 · 0.0189 · 0.9245 ≈ 0.009260717

so finally, based on the above equation,

P(Spam = Y |Free = Y,Caps = N) =

=
P(Spam = Y,Free = Y,Caps = N)

P(Spam = Y,Free = Y,Caps = N) + P(Spam = N,Free = Y,Caps = N)

=
0.047248677

0.047248677 + 0.009260717
≈ 0.836120752
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P0 Topics Discussion (3)

– Discussion of individual projects as proposed in P0 submissions
– Projects discussed: P-07, P-08, P-09, P-11, P-12, P-13
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