
Natural Language Processing
CSCI 4152/6509 — Lecture 15
Inference with HMMs

Instructors: Vlado Keselj
Time and date: 16:05 – 17:25, 30-Oct-2024
Location: Carleton Tupper Building Theatre C

CSCI 4152/6509, Vlado Keselj Lecture 15 1 / 27

Previous Lecture

Witten-Bell smoothing (finished)

POS tagging: Introduction

Reading: [JM] Ch5 Part-of-Speech Tagging

Open word categories

Closed word categories

Other word categories
Hidden Markov Model (HMM):

I idea, definition, graphical representation
I HMM assumption

HMM POS Example
CSCI 4152/6509, Vlado Keselj Lecture 15 2 / 27

Reminder: Learning HMM (Training)

Let us Learn HMM from completely labeled data:
swat V flies N like P ants N

time N flies V like P an D arrow N

We will use smoothing in word generation, by giving
a 0.5 count to all unseen words

CSCI 4152/6509, Vlado Keselj Lecture 15 3 / 27

Reminder: Generated Tables

T1 P(T1)
N 0.5
V 0.5

Ti−1 Ti P(Ti|Ti−1)
D N 1
N P 0.5
N V 0.5
P D 0.5
P N 0.5
V N 0.5
V P 0.5

Ti Wi P(Wi|Ti)
D an 2/3 ≈ 0.666666667
D * 1/3 ≈ 0.333333333
N ants 2/9 ≈ 0.222222222
N arrow 2/9 ≈ 0.222222222
N flies 2/9 ≈ 0.222222222
N time 2/9 ≈ 0.222222222
N * 1/9 ≈ 0.111111111
P like 0.8
P * 0.2
V flies 0.4
V swat 0.4
V * 0.2

CSCI 4152/6509, Vlado Keselj Lecture 15 4 / 27

Tagging Example

T1

W1=flies

T2

W2=* (are) W3=like

T3

W4=flies

T4

arg max
T

P(T |W = sentence) =

= arg max
T

P(T,W = sentence)

P(W = sentence)
= arg max

T
P(T,W = sentence)

= arg max
T

P(T1) · P(W1 = flies|T1) · P(T2|T1) · P(W2 = *|T2)

·P(T3|T2) · P(W3 = like|T3) · P(T4|T3) · P(W4 = flies|T4)

CSCI 4152/6509, Vlado Keselj Lecture 15 5 / 27

“Brute-Force” Approach

Try all combinations of variable values T1, T2, T3,
and T4

Calculate the overall probability for each of them
using the formula

P(T1) · P(W1 = flies|T1)
·P(T2|T1) · P(W2 = *|T2)
·P(T3|T2) · P(W3 = like|T3)
·P(T4|T3) · P(W4 = flies|T4)

Choose the maximal probability

CSCI 4152/6509, Vlado Keselj Lecture 15 6 / 27

Brute-Force Approach (tabular view)

CSCI 4152/6509, Vlado Keselj Lecture 15 7 / 27

Efficient Tagging with HMM

Rather than using the brute-force approach, we can
incrementally optimize the product expression by
partial maximization from left to right

One way to represent this is by using a table, which
leads to the dynamic programming solution, or the
Viterbi algorithm

The second way to represent this computation is
using message passing, or product-sum algorithm

CSCI 4152/6509, Vlado Keselj Lecture 15 8 / 27

HMM Inference: Dynamic Programming Solution

Brute-force approach is too inefficient

Idea for more efficient calculation: maximize
sub-products first
Dynamic Programming approach: divide problem
into sub-problems

I with a manageable number of sub-problems

Find maximal partial configurations up to T1, then
T2, T3, and T4

CSCI 4152/6509, Vlado Keselj Lecture 15 9 / 27

Dynamic Programming Approach (graphical view)

CSCI 4152/6509, Vlado Keselj Lecture 15 10 / 27

Viterbi Algorithm Example

T1 (W1 = flies) T2 (W2 = *) T3 (W3 = like) T4 (W4 = flies)
P(T1)P(W1|T1) p · P(T2|T1)P(W2|T2) p · P(T3|T2)P(W3|T3) p · P(T4|T3)P(W4|T4)

D 0× 0 = 0 DD: 0× 0× 1
3

= 0 DD: 0× 0× 0 = 0 DD: 0× 0× 0 = 0

ND: 1
9
× 0× 1

3
= 0 ND: 1

90
× 0× = 0 ND: 0× 0× 0 = 0

PD: 0 PD: 1
50
× 1

2
× 0 = 0 PD: 1

225
× 0.5× 0 = 0

VD: 0 VD: 1
90
× 0× 0 = 0 VD: 0× 0× 0 = 0

max: 0 max: 0 max: 0

N 0.5× 2
9

= 1
9

DN: 0× 1 . . . = 0 DN: 0× 1× 0 = 0 DN: 0× 1× 2
9

= 0

NN: 1
9
× 0 . . . = 0 NN: 1

90
× 0 . . . = 0 NN: 0× 0× 2

9
= 0

PN: 0× . . . = 0 PN: 1
50

×0.5×0 = 0 PN: 1
225

×0.5× 2
9

= 1
2025

VN: 0.2×0.5× 1
9

= 1
90

VN: 1
90
× 0.5× 0 = 0 VN: 0× 0.5× 2

9
= 0

max: 1
90

max: 0 max: 1
2025

P 0× 0 = 0 DP: 0× . . . = 0 DP: 0× 0× 0.8 = 0 DP: 0× 0× 0 = 0

NP: 1
9
×0.5×0.2 = 1

90
NP: 1

90
× 0.5× 0.8 = 1

225
NP: 0× 0.5× 0 = 0

PP: 0× . . . = 0 PP: 1
50
× 0× 0.8 = 0 PP: 1

225
× 0× 0 = 0

VP: 0.2×0.5×0.2 = 1
50

VP: 1
90

×0.5×0.8 = 1
225

VP: 0× 0.5× 0 = 0

max: 1
50

max: 1
225

max: 0

V 0.5× 0.4 = 0.2 DV: 0× . . . = 0 DV: 0× 0× 0 = 0 DV: 0× 0× 0.4 = 0

NV: 1
9
×0.5×0.2 = 1

90
NV: 1

90
× 0.5× 0 = 0 NV: 0× 0.5× 0.4 = 0

PV: 0× . . . = 0 PV: 1
50
× 0× 0 = 0 PV: 1

225
× 0× 0.4 = 0

VV: 0.2× 0 . . . = 0 VV: 1
90
× 0× 0 = 0 VV: 0× 0× 0.4 = 0

max: 1
90

max: 0 max: 0

CSCI 4152/6509, Vlado Keselj Lecture 15 11 / 27

HMM as Bayesian Network

Viterbi algorithm is an efficient way to solve a
special problem:

I completion with known observables and
unknown hidden nodes of an HMM

General approach:
I Treat HMM as Bayesian Network
I Apply Product-Sum (i.e., “Message-passing”)

algorithm for efficient inference

CSCI 4152/6509, Vlado Keselj Lecture 15 12 / 27

Bayesian Network Model

Also known as: Belief Networks, or Bayesian Belief
Networks
A directed acyclic graph (DAG)

I Each node representing a random variable
I Edges representing causality (probabilistic

meaning)

Conditional Probability Table (CPT) for each node

Bayesian Network assumption:

P(full configuration) =
n∏
i=1

P(Vi|Vπ(i))

CSCI 4152/6509, Vlado Keselj Lecture 15 13 / 27

Bayesian Network Example

Alarm

Burglary Earthquake

JohnCalls MaryCalls

CSCI 4152/6509, Vlado Keselj Lecture 15 14 / 27

Bayesian Network Assumption

• Bayesian Network Assumption for previous example:

P(B,E,A, J,M) = P(B)P(E)P(A|B,E)P(J |A)P(M |A)

• Probability of a complete configuration is a product of
conditional probabilities
• Each node corresponds to one conditional probability:
P(B), P(E), P(A|B,E), P(J |A), P(M |A)
• CPTs (Conditional Probability Tables are model
parameters)

CSCI 4152/6509, Vlado Keselj Lecture 15 15 / 27

Conditional Probability Tables

B P(B)
T 0.001
F 0.999

E P(E)
T 0.002
F 0.998

B E A P(A|B,E)
T T T 0.95
T T F 0.05
T F T 0.94
T F F 0.06
F T T 0.29
F T F 0.71
F F T 0.001
F F F 0.999

A J P(J |A)
T T 0.90
T F 0.10
F T 0.05
F F 0.95

A M P(M |A)
T T 0.70
T F 0.30
F T 0.01
F F 0.99

CSCI 4152/6509, Vlado Keselj Lecture 15 16 / 27

Computational Tasks

Evaluation:

P(V1=x1, ..., Vn=xn) =
n∏
i=1

P(Vi=xi|Vπ(i)=xπ(i))

Simulation

Learning from complete observations

Inference in Bayesian Networks

CSCI 4152/6509, Vlado Keselj Lecture 15 17 / 27

Inference Example using Brute Force

P(B = T |J = T) =
P(B = T, J = T)

P(J = T)

P(B = T, J = T) =
∑
E,A,M

P(B = T,E,A, J = T,M)

=
∑
E,A,M

P(B = T)P(E)P(A|B = T,E)

P(J = T |A)P(M |A)
≈ 8.49017 · 10−4

CSCI 4152/6509, Vlado Keselj Lecture 15 18 / 27

(continued)

P(J = T) = P(B = T, J = T) + P(B = F, J = T)

P(J = T) = P(B = T, J = T) + P(B = F, J = T) ≈

8.49017 · 10−4 + 5.12899587 · 10−2 = 0.0521389757

P(B = T |J = T) =
P(B = T, J = T)

P(J = T)
≈

8.49017 · 10−4

0.0521389757
≈ 0.0162837299467699.

CSCI 4152/6509, Vlado Keselj Lecture 15 19 / 27

General Inference in Bayesian Networks

In some Bayesian Networks inference is always
expensive; e.g., joint distribution has a very large
number of parameters

Can we be more efficient if number of parent nodes
is limited?

Näıve Bayes or HMM has a limit of parents to 1

If we limit number of parents to 2, this may already
lead to an NP-hard inference problem

Proof: a reduction from Circuit Satisfiability problem

CSCI 4152/6509, Vlado Keselj Lecture 15 20 / 27

Sum-Product Algorithms for Bayesian Networks

Basic idea: optimizing sum-product calculation using
graph structure
Described in “Factor graphs and the Sum-Product
Algorithm” by Kschishang, Frey, and Loeliger in 2000
Algorithm overview:

1 Construction of a factor graph
2 Message-passing algorithms

Construction of the factor graph

Principles of message passing

CSCI 4152/6509, Vlado Keselj Lecture 15 21 / 27

Factor Graph

Introduce factor nodes:

V

V2V1 Vp

V

V2V1 Vp.

f

Factor graph captures the structure of computation

CSCI 4152/6509, Vlado Keselj Lecture 15 22 / 27

Factor Graph Example

J M

A

EB

J M

A

EB

f4

f3

f5

f1 f2

CSCI 4152/6509, Vlado Keselj Lecture 15 23 / 27

Principles of Message Passing

A message summarizes computation in the
corresponding part of graph

Messages are vectors of real numbers

Each node passes to each neighbour node a message
exactly once

To pass a message to a neighbour node, a node needs
to receive messages from all other neighbour nodes

Important property: a tree-structured Bayesian
Network leads to a tree factor graph

CSCI 4152/6509, Vlado Keselj Lecture 15 24 / 27

Message Passing Ex.: Order of Computation

J M

A

EB

J M

A

EB

f4

f3

f5

f1 f2

CSCI 4152/6509, Vlado Keselj Lecture 15 25 / 27

Computation Problems Solved by Message Passing

Applicable to all inference problems
Two main types of computation:

I Summation of resulting overall products where
variables take different domain values

I Maximization: Finding variable values for
which the resulting overall product is maximized

Two main situations:
I Factor node passing a message to variable node
I Variable node passing a message to factor node

CSCI 4152/6509, Vlado Keselj Lecture 15 26 / 27

Four Cases of Message Computation

Actually, we can distinguish 4 cases of message
computation:

1. Factor node with multiple neighbours to variable
node

2. Factor leaf node to variable node

3. Variable node with multiple neighbours to factor
node

4. Variable leaf node to factor node

CSCI 4152/6509, Vlado Keselj Lecture 15 27 / 27

