Natural Language Processing CSCI 4152/6509 — Lecture 15 Inference with HMMs

Instructors: Vlado Keselj Time and date: 16:05 – 17:25, 30-Oct-2024 Location: Carleton Tupper Building Theatre C

Previous Lecture

- Witten-Bell smoothing (finished)
- POS tagging: Introduction
- Reading: [JM] Ch5 Part-of-Speech Tagging
- Open word categories
- Closed word categories
- Other word categories
- Hidden Markov Model (HMM):
 - idea, definition, graphical representation
 - HMM assumption
- HMM POS Example

Reminder: Learning HMM (Training)

- Let us Learn HMM from completely labeled data: swat V flies N like P ants N time N flies V like P an D arrow N
- We will use smoothing in word generation, by giving a 0.5 count to all unseen words

Reminder: Generated Tables

T_1	$P(T_1)$	T_{i-1}	T_i	$P(T_i T_{i-1})$	T_i	W_i	$P(W_i T_i)$
N	0.5	D	Ν	1	D	an	$2/3 \approx 0.6666666667$
V	0.5	N	Р	0.5	D	*	$1/3 \approx 0.3333333333$
		Ν	V	0.5	N	ants	$2/9 \approx 0.222222222$
		Р	D	0.5	Ν	arrow	$2/9 \approx 0.222222222$
		Р	N	0.5	Ν	flies	$2/9 \approx 0.222222222$
		V	N	0.5	Ν	time	$2/9 \approx 0.222222222$
		v	Р	0.5	Ν	*	$1/9 \approx 0.111111111$
					Р	like	0.8
					Р	*	0.2
					V	flies	0.4
					V	swat	0.4
					V	*	0.2

3

(日) (周) (三) (三)

Tagging Example

$$\arg \max_{T} P(T|W = \text{sentence}) =$$

$$= \arg \max_{T} \frac{P(T, W = \text{sentence})}{P(W = \text{sentence})} = \arg \max_{T} P(T, W = \text{sentence})$$

$$= \arg \max_{T} P(T_1) \cdot P(W_1 = \text{flies}|T_1) \cdot P(T_2|T_1) \cdot P(W_2 = *|T_2)$$

$$\cdot P(T_3|T_2) \cdot P(W_3 = \text{like}|T_3) \cdot P(T_4|T_3) \cdot P(W_4 = \text{flies}|T_4)$$

э

・ロト ・聞ト ・ヨト ・ヨト

"Brute-Force" Approach

- Try all combinations of variable values $T_{\rm 1},\,T_{\rm 2},\,T_{\rm 3},\,$ and $T_{\rm 4}$
- Calculate the overall probability for each of them using the formula

$$P(T_1) \cdot P(W_1 = \mathsf{flies}|T_1)$$

$$\cdot P(T_2|T_1) \cdot P(W_2 = *|T_2)$$

$$\cdot P(T_3|T_2) \cdot P(W_3 = \mathsf{like}|T_3)$$

$$\cdot P(T_4|T_3) \cdot P(W_4 = \mathsf{flies}|T_4)$$

• Choose the maximal probability

Brute-Force Approach (tabular view)

3

Efficient Tagging with HMM

- Rather than using the brute-force approach, we can incrementally optimize the product expression by partial maximization from left to right
- One way to represent this is by using a table, which leads to the dynamic programming solution, or the Viterbi algorithm
- The second way to represent this computation is using message passing, or product-sum algorithm

.

HMM Inference: Dynamic Programming Solution

- Brute-force approach is too inefficient
- Idea for more efficient calculation: maximize sub-products first
- Dynamic Programming approach: divide problem into sub-problems
 - with a manageable number of sub-problems
- Find maximal partial configurations up to $T_{\rm 1},$ then $T_{\rm 2},\,T_{\rm 3},$ and $T_{\rm 4}$

< 3 > < 3 >

Dynamic Programming Approach (graphical view)

CSCI 4152/6509, Vlado Keselj

10 / 27

3

Viterbi Algorithm Example

	$T_1 (W_1 = \text{flies})$	$T_2 (W_2 = *)$	$T_3 (W_3 = \text{like})$	$T_4 \ (W_4 = flies)$
	$\mathbf{P}(T_1)\mathbf{P}(W_1 T_1)$	$p \cdot P(T_2 T_1)P(W_2 T_2)$	$p \cdot P(T_3 T_2)P(W_3 T_3)$	$p \cdot P(T_4 T_3)P(W_4 T_4)$
D	$0 \times 0 = 0$	$DD: \ 0 \times 0 \times \frac{1}{3} = 0$	$DD: 0 \times 0 \times 0 = 0$	$DD: 0 \times 0 \times 0 = 0$
		ND: $\frac{1}{9} \times 0 \times \frac{1}{3} = 0$	ND: $\frac{1}{90} \times 0 \times = 0$	ND: $0 \times 0 \times 0 = 0$
		PD: 0	PD: $\frac{1}{50} \times \frac{1}{2} \times 0 = 0$	PD: $\frac{1}{225} \times 0.5 \times 0 = 0$
		VD: 0	VD: $\frac{1}{90} \times \overline{0} \times 0 = 0$	$VD: \ 0 \times 0 \times 0 = 0$
		max: 0	max: 0	max: 0
N	$0.5 \times \frac{2}{9} = \frac{1}{9}$	$DN: 0 \times 1 \ldots = 0$	$DN: 0 \times 1 \times 0 = 0$	DN: $0 \times 1 \times \frac{2}{9} = 0$
		NN: $\frac{1}{9} \times 0 \dots = 0$	NN: $\frac{1}{90} \times 0 \dots = 0$	NN: $0 \times 0 \times \frac{2}{9} = 0$
		$PN: 0 \times \ldots = 0$	PN: $\frac{1}{50} \times 0.5 \times 0 = 0$	PN: $\frac{1}{225} \times 0.5 \times \frac{2}{9} = \frac{1}{2025}$
		VN: $0.2 \times 0.5 \times \frac{1}{9} = \frac{1}{90}$	VN: $\frac{1}{90} \times 0.5 \times 0 = 0$	VN: $0 \times 0.5 \times \frac{2}{9} = 0$
		max: $\frac{1}{90}$	max: 0	max: $\frac{1}{2025}$
Р	$0 \times 0 = 0$	$DP: 0 \times \ldots = 0$	$DP: 0 \times 0 \times 0.8 = 0$	$DP: 0 \times 0 \times 0 = 0$
		NP: $\frac{1}{9} \times 0.5 \times 0.2 = \frac{1}{90}$	NP: $\frac{1}{90} \times 0.5 \times 0.8 = \frac{1}{225}$	NP: $0 \times 0.5 \times 0 = 0$
		$PP:\ 0\times\ldots=0$	PP: $\frac{1}{50} \times 0 \times 0.8 = 0$	PP: $\frac{1}{225} \times 0 \times 0 = 0$
		VP: $0.2 \times 0.5 \times 0.2 = \frac{1}{50}$	VP: $\frac{1}{90} \times 0.5 \times 0.8 = \frac{1}{225}$	$VP: 0 \times 0.5 \times 0 = 0$
		max: $\frac{1}{50}$	max: $\frac{1}{225}$	max: 0
V	$0.5 \times 0.4 = 0.2$	$DV: 0 \times \ldots = 0$	$DV: 0 \times 0 \times 0 = 0$	$DV: 0 \times 0 \times 0.4 = 0$
		NV: $\frac{1}{9} \times 0.5 \times 0.2 = \frac{1}{90}$	NV: $\frac{1}{90} \times 0.5 \times 0 = 0$	NV: $0 \times 0.5 \times 0.4 = 0$
		$PV: 0 \times \ldots = 0$	PV: $\frac{1}{50} \times 0 \times 0 = 0$	PV: $\frac{1}{225} \times 0 \times 0.4 = 0$
		$VV: 0.2 \times 0 \ldots = 0$	VV: $\frac{1}{90} \times 0 \times 0 = 0$	$VV: 0 \times 0 \times 0.4 = 0$
		max: 1/90	max: 0	max: 0

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

HMM as Bayesian Network

- Viterbi algorithm is an efficient way to solve a special problem:
 - completion with known observables and unknown hidden nodes of an HMM
- **General** approach:
 - Treat HMM as Bayesian Network
 - Apply Product-Sum (i.e., "Message-passing") algorithm for efficient inference

Bayesian Network Model

- Also known as: Belief Networks, or Bayesian Belief Networks
- A directed acyclic graph (DAG)
 - Each node representing a random variable
 - Edges representing causality (probabilistic meaning)
- Conditional Probability Table (CPT) for each node
- Bayesian Network assumption:

$$P(\text{ full configuration }) = \prod_{i=1}^{n} P(V_i | \mathbf{V}_{\pi(i)})$$

< 3 > < 3 >

Bayesian Network Example

2

・ロト ・聞ト ・ヨト ・ヨト

Bayesian Network Assumption

• Bayesian Network Assumption for previous example:

 $\mathbf{P}(B, E, A, J, M) = \mathbf{P}(B)\mathbf{P}(E)\mathbf{P}(A|B, E)\mathbf{P}(J|A)\mathbf{P}(M|A)$

- Probability of a complete configuration is a product of conditional probabilities
- Each node corresponds to one conditional probability: P(B), P(E), P(A|B,E), P(J|A), P(M|A)
- CPTs (Conditional Probability Tables are model parameters)

|山下 |田下 |田下

Conditional Probability Tables

						B	E	A	$\mathcal{P}(A B,E)$
						T	T	T	0.95
						T	T	F	0.05
B	P(.	B)	E	P(E))	T	F	Т	0.94
T	0.0	01	T	0.00	2	T	F	F	0.06
F	0.9	99	F	0.99	8	F	T	T	0.29
				•		F	T	F	0.71
						F	F	T	0.001
						F	F	F	0.999
A	J	$ \mathbf{P}(J) $	A)	A	M	P(I)	M A	I)	
T	Τ	0.9	0	T	T	0	.70		
T	F	0.10		T	F	0.30			
F	Τ	0.0	5	F	T	0	.01		
F	F	0.9	5	F	F	0	.99		

3

(日) (周) (三) (三)

Computational Tasks

Evaluation:

$$P(V_1 = x_1, ..., V_n = x_n) = \prod_{i=1}^n P(V_i = x_i | \mathbf{V}_{\pi(i)} = \mathbf{x}_{\pi(i)})$$

- Simulation
- Learning from complete observations
- Inference in Bayesian Networks

A B < A B <</p>

Inference Example using Brute Force

$$P(B = T|J = T) = \frac{P(B = T, J = T)}{P(J = T)}$$

$$\begin{split} \mathbf{P}(B=T,J=T) &= \sum_{E,A,M} \mathbf{P}(B=T,E,A,J=T,M) \\ &= \sum_{E,A,M} \mathbf{P}(B=T) \mathbf{P}(E) \mathbf{P}(A|B=T,E) \\ &\quad \mathbf{P}(J=T|A) \mathbf{P}(M|A) \\ &\approx 8.49017 \cdot 10^{-4} \end{split}$$

3

メロト メポト メヨト メヨト

(continued)

$$P(J = T) = P(B = T, J = T) + P(B = F, J = T)$$

$$P(J = T) = P(B = T, J = T) + P(B = F, J = T) \approx$$

8.49017 \cdot 10^{-4} + 5.12899587 \cdot 10^{-2} = 0.0521389757

$$P(B = T | J = T) = \frac{P(B = T, J = T)}{P(J = T)} \approx$$
8.49017 · 10⁻⁴

 $\frac{3.49017 \cdot 10}{0.0521389757} \approx 0.0162837299467699.$

æ

・ロト ・聞 ト ・ ヨト ・ ヨトー

General Inference in Bayesian Networks

- In some Bayesian Networks inference is always expensive; e.g., joint distribution has a very large number of parameters
- Can we be more efficient if number of parent nodes is limited?
- Naïve Bayes or HMM has a limit of parents to 1
- If we limit number of parents to 2, this may already lead to an NP-hard inference problem
- Proof: a reduction from Circuit Satisfiability problem

Sum-Product Algorithms for Bayesian Networks

- Basic idea: optimizing sum-product calculation using graph structure Described in "Factor graphs and the Sum-Product Algorithm" by Kschishang, Frey, and Loeliger in 2000
- Algorithm overview:
 - Construction of a factor graph
 - 2 Message-passing algorithms
- Construction of the factor graph
- Principles of message passing

▲ 国 トー 4 国 ト

• Introduce factor nodes:

• Factor graph captures the structure of computation

< 3 > < 3 >

Factor Graph Example

2

- 本間 と 本語 と 本語 と

Principles of Message Passing

- A message summarizes computation in the corresponding part of graph
- Messages are vectors of real numbers
- Each node passes to each neighbour node a message exactly once
- To pass a message to a neighbour node, a node needs to receive messages from all other neighbour nodes
- Important property: a tree-structured Bayesian Network leads to a tree factor graph

Message Passing Ex.: Order of Computation

Computation Problems Solved by Message Passing

- Applicable to all inference problems
- Two main types of computation:
 - Summation of resulting overall products where variables take different domain values
- Maximization: Finding variable values for which the resulting overall product is maximized
 Two main situations:
 - Factor node passing a message to variable node
 - Variable node passing a message to factor node

Four Cases of Message Computation

- Actually, we can distinguish 4 cases of message computation:
- 1. Factor node with multiple neighbours to variable node
- 2. Factor leaf node to variable node
- 3. Variable node with multiple neighbours to factor node
- 4. Variable leaf node to factor node