
Lecture 16 p.1

Faculty of Computer Science, Dalhousie University 4-Nov-2024
CSCI 4152/6509 — Natural Language Processing

Lecture 16: Efficient Inference for Bayesian Networks and HMMs

Location: Carleton Tupper Building Theatre C Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

– HMM POS example (continued)
– HMM Brute-force approach
– HMM Inference: Viterbi algorithm
– HMM as Bayesian Network
– Bayesian Network definition
– Burglar-earthquake example
– BN inference using brute force
– Complexity of general inference in BNs
– Sum-product algorithms (started)

Slide notes:

Four Cases of Message Computation (repeated)
– Actually, we can distinguish 4 cases of message computation:

1. Factor node with multiple neighbours to variable node
2. Factor leaf node to variable node
3. Variable node with multiple neighbours to factor node
4. Variable leaf node to factor node

Factor Node with Multiple Neighbours Passing a Message to Variable Node

V1

V2

. . .

Vp

f V

m1

m2

mp

m

for each value V=a calculate m(a):

for all combinations of V1 .. Vp

calculate m1*m2*..mp*f

and keep sum or max

m(a) is resulting sum or max

− case with multiple neighbours
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Factor Node with No Other Neighbours Passing a Message to Variable Node

f V
m

for each value V=a : m(a) = f(a)

− case with no other neighbours

Variable Node with Multiple Neighbours Passing a Message to Factor Node

f2

. . .

fp

V f

f1
m1

m2

mp

m

m(a)=m1(a)*m2(a)*...*mp(a)

− case with multiple neighbours

Variable Node with No Other Neighbours Passing a Message to Factor Node

fV
m

− case with no other neighbours

for each value a of V: m(a) = 1

16.3.1 Solving Inference Tasks with Message-Passing Algorithms

Slide notes:

Solving Inference Tasks
– Distinguish the following cases of inference tasks:

1. Marginalization with one variable
2. Marginalization in general
3. Conditioning with one variable
4. Conditioning in general
5. Completion
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Message-Passing Algorithm for Marginalization with One Variable

We first consider the algorithm when we marginalize only on one variable.

Slide notes:

Marginalization with One Variable
– P(Vi=xi) =?
– Apply general message passing rules with summation
– At the end

P(Vi=xi) = Mf1→Vi
(xi) · · ·Mfp→Vi

(xi)

– Running time: O(nmp+1)

– MessagesM are vectors of real numbers (u1, ..., um), where uk is a number that summarizes the computation
for the case V = dk, where the domain for all variables is {d1, d2, . . . , dm}.

– Messages are passed from variable nodes to function nodes, and from function nodes to variable nodes.
– A node can send a message to its neighbor only when it has received all of the messages from its other

neighbors.
– Given a tree, the algorithm can start by sending messages from each of the leaves, and stops once every node

has passed a message to every neighbor. At the end, two messages will pass each edge in the graph: one for
each of the two directions.

– Function to variable messages Mf→V (x) are computed by

Mf→V (x) =
∑

x1,...,xp

f(x, x1, ..., xp)MV1→f (x1) · · ·MVp→f (xp)

over all other variables V1, ..., Vp (beside V ) connected to f . If f is connected only to V , then Mf→V (x) =
f(x).

– Variable to function messages MV→f (x) are computed by

MV→f (x) =

{
1 if only f is connected to V
Mf1→V (x) · · ·Mfp→V (x) otherwise

over all other functions f1, ..., fp (beside f ) adjacent to V .
– Once all of the messages have been passed, then the final marginal for any variable Vi can be calculated by

P(Vi=xi) = Mf1→Vi
(xi) · · ·Mfp→Vi

(xi)

for all f1, ..., fp adjacent to Vj .

This algorithm is efficient: There are 2n− 1 edges in an undirected tree containing 2n nodes (n variables and n
function nodes). 2(2n− 1) messages get sent (one in each direction along each edge). Each function to variable
message can be computed in time O(mp) where p is the number of function neighbors, each variable to function
message can be computed in time O(mp) where p is the number of variable neighbors, and the final marginal can be
computed in time O(mp). Thus, the total running time is bounded by O(nmp) where p is the maximum number of
neighbors of any node in the graph. This is linear in n and polynomial in m (but exponential in p, so the maximum
number of neighbors has to be bounded).
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Message-passing Algorithm for Marginalization in General

Slide notes:

Marginalization in General
– Consider calculating P(V1 =x1, ..., Vk=xk).
– The variables V1, ..., Vk are called evidence variables and the

instantiated values x1, . . . , xk are called observed evidence.
– An evidence-variable to function message is computed in the

same way as before if x = xj (i.e., it is equal to observed
evidence), otherwise it is 0.

– Final computation is done in any evidence node Vj :

P(V1 =x1, ..., Vk=xk) = Mf1→Vj
(xj) · · ·Mfp→Vj

(xj)

Consider computing the marginal of one particular partial configuration P(V1 = x1, ..., Vk = xk). The variables
V1, ..., Vk are called evidence variables and the instantiated values x1, . . . , xk are called observed evidence. Then
we can compute the desired probability by using the same message passing algorithm as above, except:

– An evidence-variable to function message is computed in the same way as before if x = xj (i.e., it is equal to
observed evidence), otherwise it is 0. I.e.,

MV→f (x) =

 0 if x 6= xj
1 if x = xj and only f is adjacent to V
Mf1→V (x) · · ·Mfp→V (x) otherwise (x = xj)

over all other functions f1, ..., fp (besides f ) adjacent to V .
– Once all of the messages have been passed, then the final marginal can be determined by taking any evidence

variable Vj ∈ {V1, ..., Vk} and computing

P(V1 =x1, ..., Vk=xk) = Mf1→Vj (xj) · · ·Mfp→Vj (xj)

over all f1, ..., fp adjacent to Vj .

Message-passing Algorithm for Conditioning with One Variable

Let us assume that we need to calculate the following conditional probability: P(Vk+1 =yk+1|V1 =x1, ..., Vk=xk).
We can use the same message passing algorithm as above, treating V1, ..., Vk as evidence variables, except that

– once all of the messages have been passed, then the final conditional probability can be determined by

P(Vk+1 =yk+1|V1 =x1, ..., Vk=xk)

=
Mf1→Vk+1

(yk+1) · · ·Mfp→Vk+1
(yk+1)

Z

where Z is a normalization constant over choices of Vk+1; that is,

Z =
∑
y

Mf1→Vk+1
(y) · · ·Mfp→Vk+1

(y)

Message-passing Algorithm for Conditioning in General

To compute arbitrary conditional probability P(Vα = yα|Vβ = xβ), where α and β are two disjoint sets of indices
from {1, . . . , n}, we can use formula:

P(Vα = yα|Vβ = xβ) =
P(Vα = yα,Vβ = xβ)

P(Vβ = xβ)
,
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where we know how to calculate marginal probabilities P(Vα = yα,Vβ = xβ) and P(Vβ = xβ) using the
message-passing algorithm.

Message-passing Algorithm for Completion

If we are computing completion with one variable, it is easy to use the algorithm for conditioning on one variable to
obtain the result.

However, for completion in general, we apply a new message passing algorithm.

To compute
y∗k+1, ..., y

∗
n = arg max

yk+1,...,yn

P(Vk+1 =yk+1, ..., Vn=yn|V1 =x1, ..., Vk=xk)

we can use the same message passing algorithm as the algorithm for calculating marginal probability P(V1 =
x1, . . . , Vk = xk), except:

– Function to variable messages Mf→V (x) are computed by

Mf→V (x) = max
x1,...,xp

f(x, x1, ..., xp)MV1→f (x1) · · ·MVp→f (xp)

over all other variables V1, ..., Vp (besides V ) adjacent to f .
– Once all of the messages have been passed, then the maximum probability completion for any free variable
Vk+j can be calculated by

y∗k+j = arg max
yk+j

Mf1→Vk+j
(yk+j) · · ·Mfp→Vk+j

(yk+j)

over all f1, ..., fp containing Vk+j .
– If there are two or more values for a variable for which the maximal conditional probability is reached, we

need to make sure that all variables are assigned consistently by hard-wiring the chosen variable value.

16.4 Message-Passing Inference Algorithm: Burglar-Earthquake Example

In this example we use the previously given Burglar-Earthquake Bayesian Network:

Alarm

Burglary Earthquake

JohnCalls MaryCalls

The given tables are:
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B P(B)
T 0.001
F 0.999

E P(E)
T 0.002
F 0.998

B E A P(A|B,E)
T T T 0.95
T T F 0.05
T F T 0.94
T F F 0.06
F T T 0.29
F T F 0.71
F F T 0.001
F F F 0.999

A J P(J |A)
T T 0.90
T F 0.10
F T 0.05
F F 0.95

A M P(M |A)
T T 0.70
T F 0.30
F T 0.01
F F 0.99

Our first step is to translate this network into a factor graph:

J M

A

EB

J M

A

EB

f4

f3

f5

f1 f2

The function nodes correspond to conditional probabilities in the following way: f1 ∼ P(B), f2 ∼ P(E),
f3 ∼ P(A|B,E), f4 ∼ P(J |A), and f5 ∼ P(M |A).

Burglar-Earthquake Example Problem

– John called, probability that Burglar is in the house
– P (B = T |J = T ) =?
– Conditioning with one variable

Problem: Calculate the probability that a burglar is in the house, if we know that John has called.

We “hard-wire” the variable J to the value T , and analyze which messages we need to compute:
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J=T M

A

EB

f4

f3

f5

f1 f2

f2−>E

f3−>B

A−>f3

E−>f3

f5−>A

M−>f5

f1−>B

f4−>A

J−>f4

The messages are calculated in the following way:

f1 → B is simple table copy of P(B):
B f1 → B
T 0.001
F 0.999

Similarly:
E f2 → E
T 0.002
F 0.998

E E → f3
T 0.002
F 0.998

J is “hardwired”

to T (observed evidence) so we get:
J J → f4
T 1
F 0

M is not “hardwired”:
M M → f5
T 1
F 1

Calculation of the remaining messages requires a bit more calculations:

f4 → A
A J J → f4 f4
A = T T 1 ·0.90 = 0.9

F 0 ·0.10 = 0
Σ = 0.9

A = F T 1 ·0.05 = 0.05
F 0 ·0.95 = 0

Σ = 0.05

f5 → A
A M M → f5 f5
A = T T 1 ·0.70 = 0.7

F 1 ·0.30 = 0.3
Σ = 1

A = F T 1 ·0.01 = 0.01
F 1 ·0.99 = 0.99

Σ = 1

Hence the messages are:
A f4 → A
T 0.9
F 0.05

and
A f5 → A
T 1
F 1

. The message A→ f3 is obtained by component-wise
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multiplication of messages coming into A:
A A→ f3
T 0.9
F 0.05

Finally, we compute the message f3 → B:

f3 → B
B E A E → f3 A→ f3 f3
B = T T T 0.002 ·0.9 ·0.95 = 0.00171

T F 0.002 ·0.05 ·0.05 = 0.000005
F T 0.998 ·0.9 ·0.94 = 0.844308
F F 0.998 ·0.05 ·0.06 = 0.002994

Σ = 0.849017

f3 → B
B E A E → f3 A→ f3 f3
B = F T T 0.002 ·0.9 ·0.29 = 0.000522

T F 0.002 ·0.05 ·0.71 = 0.000071
F T 0.998 ·0.9 ·0.001 = 0.0008982
F F 0.998 ·0.05 ·0.999 = 0.0498501

Σ = 0.0513413

Hence, the message f3 → B is:
B f3 → B
T 0.849017
F 0.0513413

Final Calculation P (B = T |J = T )

Now, we can compute P(B = T |J = T ) by multiplying component-wise the messages arriving at B, and by
normalizing the result:

P (B = T |J = T ) =
f1 → B(T ) · f3 → B(T )

f1 → B(T ) · f3 → B(T ) + f1 → B(F ) · f3 → B(F )

=
0.001 · 0.849017

0.001 · 0.849017 + 0.999 · 0.513413
= 0.01628373

16.5 Message Passing Algorithm: POS Tagging Example

The HMM tagging using message passing would work as follows:

T1

W1

T2

W2

Tn

Wn

...

...

Training data:

swat V flies N like P ants N
time N flies V like P an D arrow N
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Trained HMM Model:

T1 P(T1)
N 0.5
V 0.5

, Ti−1 Ti P(Ti|Ti−1)
D N 1
N P 0.5
N V 0.5
P D 0.5
P N 0.5
V N 0.5
V P 0.5

and Ti Wi P(Wi|Ti)
D an 2/3 ≈ 0.666666667
D * 1/3 ≈ 0.333333333
N ants 2/9 ≈ 0.222222222
N arrow 2/9 ≈ 0.222222222
N flies 2/9 ≈ 0.222222222
N time 2/9 ≈ 0.222222222
N * 1/9 ≈ 0.111111111
P like 0.8
P * 0.2
V flies 0.4
V swat 0.4
V * 0.2

.

Tagging Example

Slide notes:

Tagging Example

• Example: “flies are like flies”
• Represent HMM as the following Bayesian Network:

T1

W1=flies

T2

W2=* (are) W3=like

T3

W4=flies

T4

Let us again use the example sentence “flies are like flies”, which we used in a previous example with HMM. First,
we will represent HMM configuration as a Bayesian Network with observable variables “hard-wired” to their values,
as follows:

T1

W1=flies

T2

W2=* (are) W3=like

T3

W4=flies

T4

Slide notes:

POS Tagging as Message Passing
– Solving a completion problem
– Algorithm steps:

– Create a factor graph
– Hard-wire output variables
– Use message passing with maximization
– Find maximum-likely completion

– We will calculate only necessary messages

The corresponding factor graph is:



Lecture 16 p.10 CSCI 4152/6509

T1 T2 T3 T4

W1=flies W3=like W4=fliesW2=*

f3 f3 f3

f2 f2 f2 f2

f1
m1

m2

m3

m4 m5

m6

m7

m8 m9

m10

m11

m12
m13

m14

m15

m16
m17

m18
m19

m20
m21

The messages are calculated as follows:

T1 m1

D 0
N 0.5
P 0
V 0.5

, and

W1 m2

flies 1
an 0
* 0
... 0

.

Calculation of m3 is done as follows:

m3

T1 = D W1 = flies: 1 · 0 = 0
W1 = an: 0 · 23 = 0

W1 =
...

... = 0
max:0

T1 = N W1 = flies : 1 · 29 = 2
9

W1 = an : 0 · 19 = 0
max:2/9

...

and we obtain

T1 m3

D 0
N 2/9
P 0
V 0.4

.

The other messages are:

T1 m4(= m1 ·m3)
D 0 · 0 = 0
N 0.5 · 2/9 = 1/9
P 0 · 0 = 0
V 0.5 · 0.4 = 0.2

T2 m5

D 0
N 0.1
P 0.1
V 1/18

m5 is calculated as follows:

m5 m4 · f3
T2 = D T1 = D : 0 · 0 = 0

T1 = N : 1
9 · 0 = 0

T1 = P : 0 · 0.5 = 0
T1 = V : 0.2 · 0 = 0

max:0
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m5 m4 · f3
T2 = N T1 = D : 0 · 1 = 0

T1 = N : 1
9 · 0 = 0

T1 = P : 0 · 0.5 = 0
T1 = V : 0.2 · 0.5 = 0.1

max:0.1

m5 m4 · f3
T2 = P T1 = D : 0 · 0 = 0

T1 = N : 1
9 · 0.5 = 1/18

T1 = P : 0 · 0 = 0
T1 = V : 0.2 · 0.5 = 0.1

max:0.1

m5 m4 · f3
T2 = V T1 = D : 0 · 0 = 0

T1 = N : 1
9 · 0.5 = 1/18

T1 = P : 0 · 0 = 0
T1 = V : 0.2 · 0 = 0

max:1/18

We continue calculating:

W2 m6

flies 0
an 0
* 1
... 0

,

T2 m7

D 1/3
N 1/9
P 0.2
V 0.2

,

T2 m8(= m5 ·m7)
D 0 · 13 = 0
N 0.1 · 19 = 1/90
P 0.1 · 0.2 = 0.02
V 1

18 · 0.2 = 1/90

.

To calculate m9, we have the following intermediate calculations:

m9 m8 · f3
T3 = D T2 = D : 0 · 0 = 0

T2 = N : 1
90 · 0 = 0

T2 = P : 1
50 · 0.5 = 0.01

T2 = V : 1
90 · 0 = 0

max:0.01

m9 m8 · f3
T3 = N T2 = D : 0 · 1 = 0

T2 = N : 1
90 · 0 = 0

T2 = P : 1
50 · 0.5 = 0.01

T2 = V : 1
90 · 0.5 = 1/180

max:0.01

m9 m8 · f3
T3 = P T2 = D : 0 · 0 = 0

T2 = N : 1
90 · 0.5 = 1/180

T2 = P : 1
50 · 0 = 0

T2 = V : 1
90 · 0.5 = 1/180

max:1/180
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m9 m8 · f3
T3 = V T2 = D : 0 · 0 = 0

T2 = N : 1
90 · 0.5 = 1/180

T2 = P : 1
50 · 0 = 0

T2 = V : 1
90 · 0 = 0

max:1/180

and we obtain:

T3 m9

D 0.01
N 0.01
P 1/180
V 1/180

. Then,

W3 m10

like 1
... 0

,

T3 m11

D 0
N 0
P 0.8
V 0

,

T3 m12(= m9 ·m11)
D 0.01 · 0 = 0
N 0.01 · 0 = 0
P 1

180 · 0.8 = 1/225
V 1

180 · 0 = 0

.

To calculate m13, we have the following intermediate calculations:
m13 m12 · f3

T4 = D T3 = D : 0 · 0 = 0
T3 = N : 0 · 0 = 0
T3 = P : 1

225 · 0.5 = 1/450
T3 = V : 0 · 0 = 0

max:1/450

m13 m12 · f3
T4 = N T3 = D : 0 · 1 = 0

T3 = N : 0 · 0 = 0
T3 = P : 1

225 · 0.5 = 1/450
T3 = V : 0 · 0.5 = 0

max:1/450

m13 m12 · f3
T4 = P T3 = D : 0 · 0 = 0

T3 = N : 0 · 0.5 = 0
T3 = P : 1

225 · 0 = 0
T3 = V : 0 · 0.5 = 0

max:0

m13 m12 · f3
T4 = V T3 = D : 0 · 0 = 0

T3 = N : 0 · 0.5 = 0
T3 = P : 1

225 · 0 = 0
T3 = V : 0 · 0 = 0

max:0

and we obtain:

T4 m13

D 1/450
N 1/450
P 0
V 0

. Then,

W4 m14

flies 1
... 0

, and

T4 m15

D 0
N 2/9
P 0
V 0.4

.
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To maximize the product of probabilities of T4 we calculate:
T4 m13 ·m15

D 1
450 · = 0

N 1
450 ·

2
9 = 1/2025

P 0 · 0 = 0
V 0 · 0.4 = 0

and we obtain T ∗4 = N , which we use in further messages, as a “hard-wired”

value. We calculate

T4 m16

D 0
N 2/9
P 0
V 0

, and for m17 use only T4 = N in m16 · f3:

m16 · f3
2
9 · 1 = 2/9
2
9 · 0 = 0

2
9 · 0.5 = 1/9
2
9 · 0.5 = 1/9

, and we obtain:

T3 m17

D 2/9
N 0
P 1/9
V 1/9

.

To find optimal T3 we calculate:
T3 m9 ·m11 ·m17

D 0.01 · 0 · 29 = 0
N 0.01 · 0 · 0 = 0
P 1

180 · 0.8 ·
1
9 = 1/2025

V 1
180 · 0 ·

1
9 = 0

and we obtain: T ∗3 = P

Then,

T3 m18 = m17 ·m11

D 0
N 0
P 1

9 · 0.8 = 4/45
V 0

,

T2 m19 = m18 · f3 for T3 = P
D 4

45 · 0 = 0
N 4

45 ·
1
2 = 2/45

P 4
45 · 0 = 0

V 4
45 ·

1
2 = 2/45

.

To find optimal T2 we calculate:
T2 m19 ·m5 ·m7

D 0 · 0 · 13 = 0
N 2

45 · 0.1 ·
1
9 = 1/2025

P 0 · 0.1 · 0.2 = 0
V 2

45 ·
1
18 · 0.2 = 1/2025

and we can choose either N or V . Let us choose T ∗2 = V .

T2 m20 = m7 ·m19

D 0
N 0
P 0
V 0.2 · 2

45 = 2/225

,

T1 m21 = m20 · f3 for T2 = V
D 2

225 · 0 = 0
N 2

225 ·
1
2 = 1/225

P 2
225 · 0 = 0

V 2
225 · 0 = 0

.
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To find optimal T1 we calculate:
T1 m1 ·m3 ·m21

D 0 · 0 · 0 = 0
N 0.5 · 29 ·

1
225 = 1/2025

P 0 · 0 · 0 = 0
V 0.5 · 0.4 · 0 = 0

and we obtain T ∗1 = N .

To summarize, the most probable values of unknown variables T1, T2, T3, and T4 are:

T ∗1 = N T ∗2 = V T ∗3 = P T ∗4 = N
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