Natural Language Processing
CSCI 4152/6509 — Lecture 18
Deep Learning and NLP; DCG and PCFG

Instructors: Vlado Keselj
Time and date: 16:05 — 17:25, 18-Nov-2024
Location: Carleton Tupper Building Theatre C

CSCl 4152/6509, Vlado Keselj 1/51

Previous Lecture

Neural networks and deep learning
Applications

Some main developments

Large deep learning models

Exponential growth in size of LLMs

Biological neuron, perceptron, feed-forward network
Activation functions, softmax function

Neural language model, RNN

CSCl 4152/6509, Vlado Keselj Lecture 18 2 /51

Stacked RNN

@ Stacked RNN: Output from lower level is input to
higher level; top level is final output (Jurafsky and
Martin, Flgure 9.10)

[j—ﬁ]—[:— RNN 3

| 1 i
RNN 2ﬂ
4[3

| |
m m RNN 1
| |

) O

D ())
’D%

X1 X2 X3

CSCl 4152/6509, Vlado Keselj Lecture 18

3/51

Bidirectional RNN

@ Bidirectional RNN; trained forward and backward
with concatenated output (Jurafsky and Martin,

Figure 9.11)
@ Output can be used for sequence labeling, for
example
¥4 ¥ ¥n

Y3
B concatenated
,——U outputs
[_I_I
L]

RNN 2 ———] |

(O S ey)

b

CSCl 4152/6509, Vlado Keselj Lecture 18 4 /51

LSTM — Long Short-Term Memory

@ LSTM: z; is input, h;_1 is previous hidden state, ¢;_;
is previous long-term context, h; and ¢; is output
(Jurafsky and Martin, Figure 9.13)

Gt~

P g ——peal

Xy —

CSCl 4152/6509, Vlado Keselj 5/51

LSTM Cell

@ Another view of LSTM cell (source Wikipedia)

hy

x

tant
hier X

hy

Legend:

Layer ComponentwiseCopy Concatenate

SN

o & = E E DA
CSCl 4152/6509, Vlado Keselj Lecture 18

Transformers

@ Transformers map a sequence of input vectors to a
sequence of output vectors of the same length

1 o9 ... Tp
4
Yi Y2 ... Un

CSCl 4152/6509, Vlado Keselj Lecture 18 7 /51

Self-Attention Layer

Self-Attention | |] [| [] |l]
Layer

(Jurafsky and Martin)

CSCI 4152/6509, Vlado Keselj Lecture 18

8 /51

Self-Attention Training

score(x;, T;) = x; - Xj
o;j = softmax(score(x;, x;)) Vj <i

Yi = E QT

J<i

CSCI 4152/6509, Vlado Keselj Lecture 18 9 /51

Transformer Block

)

/- - I
Transformer (Layer Normalize))
Block
Residual
connection [Feedforward Layer]
(Layer Normalize)
Residual
connection [Self-Attention Layer J
- R

(Jurafsky and Martin)

|
GG

CSCl 4152/6509, Vlado Keselj Lecture 18

10 / 51

Multihead Attention Layer

!

s | 3
Project down to d WO
Copaorte [readt [e [e hTA)
[WQ4.WK4.WV4 Head 4]
’thiltlht?ad (W, W, W, / Heads)
ention [W WY /'H/eédZ]
Layer =R
(wo, W, w¥, Headt |
\ AN /4 J
X

(® - B

(Jurafsky and Martin)

11 /51

CSCl 4152/6509, Vlado Keselj Lecture 18

Encoding Word Positions in Transformers

Transformer
Blocks

Composite
Embeddings
(input + position)

Word
Embeddings

Position
Embeddings

Janet will back the bill

IMNTERI] A simple way to model position: simply adding an embedding representation
of the absolute position to the input word embedding.

from: Jurafsky and Martin, 3rd ed. draft
L

Training Transformer as a Language Model

Next word long arl1d tha lnks fTr all I
T
Loss | — 108 ya | | — TO Whale | | —I0E Yin | | — OB Yrhe | |— log 'v’K"’“'“‘l = % Z Leg
t=1
Vocanuary
Linear Layer N i 7 i i i i
i I i i i
Transformer é é é é é
Block = Egggg ”ggg?gg = ...
Input @% é
Embeddings
and thanks for

So long
Training a transformer as a language model.

Figure 9.21

from: Jurafsky and Martin, 3rd ed. draft

Lecture 18 13 / 51

CSCl 4152/6509, Vlado Keselj

Text Completion with Transformers

Completion Text

Sample from Softmax

)]

i

i

i

ol)

I

linear layer é i
|

]

i

—

Transformer
Blocks
i
Input i
Embeddings i ?
]
i
S0 leng and thanks for | Ll Jhe
P >
— —_ -
T
Prefix Text

IOTUITCRN] Autoregressive text completion with transformers.

from: Jurafsky and Martin, 3rd ed. draft

CSCI 4152/6509, Vlado Keselj Lecture 18 14 / 51

Parsing Natural Languages

Must deal with possible ambiguities

Decide whether to make a phrase structure or
dependency parser

@ When parsing NLP, there are generally two
approaches:
@ Backtracking to find all parse trees
© Chart parsing

Prolog provides a very expressive way to NL parsing

FOPL is also used to represent semantics

CSCl 4152/6509, Vlado Keselj Lecture 18 15 / 51

Parsing with Prolog

@ We will go over a brief Prolog review
» more details are provided in the lab
@ Implicative normal form:

PLAD2N ... ANDp=qnVq@V...VQqn

@ If m <1, then the clause is called a Horn clause.

@ If resolution is applied to two Horn clauses, the result
Is again a Horn clause.

@ Inference with Horn clauses is relatively efficient

CSCl 4152/6509, Vlado Keselj Lecture 18 16 / 51

Rules

A Horn clause with m = 1 is called a rule:

PLAD2N ... APp = q1

It is expressed in Prolog as: q1 :- pl, p2, ..., p_n.

CSCl 4152/6509, Vlado Keselj Lecture 18 17 / 51

Facts

A clause with m = 0 is called a fact:
PLADP2 A ... Ap, =T

is expressed in Prolog as: pl, p2, ..., p_n.
or :- pl, p2, ..., p_n.
and it is called a fact.

CSCl 4152/6509, Vlado Keselj Lecture 18 18 / 51

Rabbit and Franklin Example

The ‘rabbit and franklin’ example in Prolog:
hare(rabbit) .

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

Save the program in a file, load the file.

After loading the file, on Prolog prompt, type:
faster(rabbit,franklin).

Try: faster(X,franklin). and faster(X,Y).

CSCl 4152/6509, Vlado Keselj Lecture 18 19 / 51

Rabbit and Franklin Example

hare(rabbit).
turtle(franklin).
faster(X,Y) :- hare(X), turtle(Y).

?- faster(rabbit,franklin).

CSCl 4152/6509, Vlado Keselj Lecture 18 20 / 51

Rabbit and Franklin Example

hare(rabbit).
turtle(franklin).
faster(X,Y) :- hare(X), turtle(Y).

?- faster(X,franklin).

CSCl 4152/6509, Vlado Keselj Lecture 18 21 /51

Rabbit and Franklin Example

hare(rabbit).
turtle(franklin).
faster(X,Y) :- hare(X), turtle(Y).

?- faster(X,Y).

CSCl 4152/6509, Vlado Keselj Lecture 18 22 /51

Unification and Backtracking

@ Two important features of Prolog: unification and
backtracking

@ Prolog expressions are generally mathematical
symbolic expressions, called terms

@ Unification is an operation of making two terms
equal by substituting variables with some terms

e Backtracking: Prolog uses backtracking to satisfy
given goal; i.e., to prove given term expression, by
systematically trying different rules and facts, which
are given in the program

CSCl 4152/6509, Vlado Keselj Lecture 18 23 /51

Example in Unification and Backtracking

@ What happens after we type:
?- faster(rabbit,franklin).

@ Prolog will search for a ‘matching’ fact or head of a
rule:
faster(rabbit,franklin) and
faster(X,Y) :— ...

@ 'Matching’ here means unification

o After unifying faster (rabbit,franklin) and
faster(X,Y) with substitution X<—rabbit and
Y<franklin, the rule becomes:
faster(rabbit,franklin) :-

hare(rabbit), turtle(franklin).

CSCl 4152/6509, Vlado Keselj Lecture 18 24 / 51

Example (continued)

@ Prolog interpreter will now try to satisfy predicates at
the right hand side: hare(rabbit) and
turtle(franklin) and it will easily succeed based
on the same facts

o If it does not succeed, it can generally try other
options through backtracking

CSCl 4152/6509, Vlado Keselj Lecture 18 25 /51

Variables in Prolog

@ Variable names start with uppercase letter or
underscore (‘")

@ _ is a special, anonymous variable

o Examples: 7- faster(rabbit,franklin).
Yes ;

?7- faster(rabbit,X).

X = franklin ;
?- hare(X).
X = rabbit ;

CSCl 4152/6509, Vlado Keselj Lecture 18 26 / 51

Lists (Arrays), Structures.

Lists are implemented as linked lists. Structures (records)
are expressed as terms. Examples:

In program: person(john,public,’123-456").
Interactively: ?- person(john,X,Y).

[] is an empty list.

A list is created as a nested term, usually a special
function *." (dot):

7- is_list(.(a, .(b, .(c, [1)))).

CSCl 4152/6509, Vlado Keselj Lecture 18 27 /51

List Notation

(.(a, .(b, .(c, [1))) is the same as [a,b,c]
This is also equivalent to:

Lal [b | [cl [011]

or

[a, bl [c]]

A frequent Prolog expression is: [H|T]

where H is head of the list, and T is the tail, which is

another list.

CSCl 4152/6509, Vlado Keselj 28 / 51

Example: Calculating Factorial

factorial(0,1).

factorial(N,F) :- N>0, M is N-1, factorial(M,FM),
F is FMxN.

After saving in factorial.prolog and loading to Prolog:

?7- [’factorial.prolog’].

% factorial.prolog compiled 0.00 sec, 1,000 bytes

Yes
?7- factorial(6,X).

X =720 ;

CSCl 4152/6509, Vlado Keselj Lecture 18 29 /51

Example: List Membership

Example (testing membership of a list):

member (X, [X[|_]).
member (X, [_|L]) :- member(X,L).

CSCl 4152/6509, Vlado Keselj Lecture 18 30 /51

Natural Language Syntax

@ Syntax — NLP level of processing

» Syntax = sentence structure; i.e., study of the
phrase structure

@ syntaxis (Greek) — “setting out together,
arrangement”

@ Words are not randomly ordered — word order is
important and non-trivial

@ There are "free-order” languages (e.g., Latin,
Russian), but they are not completely order free.

@ Reading: Chapter 12 (JM book) or Ch.17 (JM
on-line)

CSCl 4152/6509, Vlado Keselj Lecture 18 31 /51

Phrase Structure and Dependency Structure

@ Two ways of organizing sentence structure:

» phrase structure
» dependency structure
@ Phrase structure

» nested consecutive groupings of words
@ Dependency structure

» dependency relations between words
@ The main NLP task at the syntax level: parsing

» given a sentence, find the correct structure

CSCl 4152/6509, Vlado Keselj Lecture 18 32 /51

Phrase Structure

@ Phrase Structure Grammars or Context-Free
Grammars
@ A hierarchical view of sentence structure:

» words form phrases
» phrases form clauses
» clauses form sentences

@ Parsing: given a sentence find the context-free parse
tree; a.k.a. phrase structure parse tree

CSCl 4152/6509, Vlado Keselj Lecture 18 33 /51

Example Sentence

the man took the book

o & = E DA
CSCl 4152/6509, Vlado Keselj Lecture 18

Phrase Structure Parse Tree Examples

@ Phrase Structure parse trees are also called
Context-Free parse trees
@ This example is from the seminal Noam Chomsky's

paper in 1956:
Sentence

N

NP VP

N /\
the man Verb NP

| N
took the book

CSCl 4152/6509, Vlado Keselj Lecture 18 35 /51

Parse Tree Examples (Penn treebank tagset)

e Using Penn treebank tagset:
S

T

NP VP

P T
DT NN VvBD NP

the man ook DT NN

| |
the book

CSCl 4152/6509, Vlado Keselj 36 / 51

Parse Tree Examples (‘triangle’ notation)

e Sometimes we simplify a parse tree by ignoring a part
of the structure, as in:

S

N

NP VP

/\ /\
DT NN vBD NP

the man {50k the book

CSCl 4152/6509, Vlado Keselj Lecture 18 37 /51

Parse Tree Example 2 (‘butterfly’ sentence)

That man caught the butterfly with a net

CSCI 4152/6509, Vlado Keselj Lecture 18 38 /51

Parse Tree Example 2 (‘butterfly’)

e Another example:

A

NP VP
/\ /\
DT NN ygp NP

That man caught DT NN
|

the butterfly

CSCl 4152/6509, Vlado Keselj

39 / 51

Parse Tree Example3 (‘butterfly’ extended)

e Extending the previous example:

S

NP VP
/\

DT NN

| |

Th

at man - \eh NP PP

caught DT NN IN NP

the butterfly with DT NN
| |

a net

CSCl 4152/6509, Vlado Keselj Lecture 18 40 / 51

Parse Tree Example (root bottom)

e Representing parse trees in the bottom-up direction:
Tlllat mlan calllght tllle buttlerﬂy wlith 2|1 neltt.
DT NN VBD DT NN IN DT NN

VoLV Y

NP NP NP

LPP/

VP

CSCl 4152/6509, Vlado Keselj Lecture 18 41 /51

Some Basic Notions in Context-Free Trees

o Context-free trees, also called phrase structure trees,
parse trees, syntactic trees

@ Node relations: root, leaf, parent (mother), child
(daughter), sibling, ancestor, descendant, dominate

o Context-free grammar

@ Consider for example the context-free grammar
induced by the last parse tree shown

CSCl 4152/6509, Vlado Keselj Lecture 18 42 /51

Context-Free Grammars (CFG) Review
CFG is a tuple (V,T, P, S), where

@ V is a finite set of variables or non-terminals;
eg., V={S,NP,DT,NN, VP, VBD, PP, IN}

@ T is a finite set of terminals, words, or lexemes;
e.g., T'= {That, man, caught, the, butterfly, with, a,
net}

@ P is a set of rules or productions in the form
X — a,where X e Vand a e (VUT)"; eg.,
P={5— NP VP, NP— DT NN, DT —
That, NP — ¢}

@ S is the start symbol S € V

CSCl 4152/6509, Vlado Keselj 43 / 51

Some Notions about CFGs

e CFG, also known as Phrase-Structure Grammar
(PSG)
e Equivalent to BNF (Backus-Naur form)

@ Idea from Wundt (1900), formally defined by
Chomsky (1956) and Backus (1959)

@ Typical notation (V. T, P, S); also (N,X%, R, 5)

CSCl 4152/6509, Vlado Keselj 44 / 51

CFG Derivations

@ Direct derivation, derivation
@ Example of a direct derivation: S = NP VP

@ Example of a derivation (beginning of):
S = NP VP = DT NN VP = That NN VP =

@ Left-most and right-most derivation

CSCl 4152/6509, Vlado Keselj 45 / 51

Parse Tree Example (revisited)

TIllat mlan calllght tllle buttclarﬂy wlith all nclet.
DT NN VBD DT NN IN DT NN

VoV Y

NP NP NP

LPP/

VP

CSCl 4152/6509, Vlado Keselj Lecture 18 46 / 51

A Derivation Example (random)

T]"nat m‘an cal‘lght tl‘1e buttc‘arﬂy with a net.
DT

T
\/NNVBDDTNN IN DT NN

o = £ DA
CSCl 4152/6509, Vlado Keselj Lecture 18

Leftmost Derivation Example

T]"nat man cal‘lght tl‘1e buttc‘arﬂy w‘ith z‘a net.
\/NN VBD DT NN

.
IN DT\;N
NP /NP
[
VP
S

o = = £ DA
CSCl 4152/6509, Vlado Keselj Lecture 18

Rightmost Derivation Example

T]"nat man cal‘lght tl‘1e buttc‘arﬂy w‘ith z‘a net.
\/NN VBD DT NN

.
IN DT\;N
NP /NP
[
VP
S

o = = £ DA
CSCl 4152/6509, Vlado Keselj Lecture 18

Leftmost Derivation Example

S = NPVP= DT NN VP = That NN VP = That man VP
That man VBD NP PP

That man caught NP PP

That man caught DT NN PP

That man caught the NN PP

That man caught the butterfly PP

That man caught the butterfly IN NP

That man caught the butterfly with NP
That man caught the butterfly with DT NN
That man caught the butterfly with a NN
That man caught the butterfly with a net

R R

CSCl 4152/6509, Vlado Keselj Lecture 18 50 / 51

Some Notions about CFGs (continued)

@ Language generated by a CFG
@ Context-Free languages

@ Parsing task

@ Ambiguous sentences

@ Ambiguous grammars

@ Inherently ambiguous languages

CSCl 4152/6509, Vlado Keselj Lecture 18 51 /51

