
Natural Language Processing
CSCI 4152/6509 — Lecture 18
Deep Learning and NLP; DCG and PCFG

Instructors: Vlado Keselj
Time and date: 16:05 – 17:25, 18-Nov-2024
Location: Carleton Tupper Building Theatre C

CSCI 4152/6509, Vlado Keselj Lecture 18 1 / 51

Previous Lecture

Neural networks and deep learning

Applications

Some main developments

Large deep learning models

Exponential growth in size of LLMs

Biological neuron, perceptron, feed-forward network

Activation functions, softmax function

Neural language model, RNN

CSCI 4152/6509, Vlado Keselj Lecture 18 2 / 51

Stacked RNN

Stacked RNN: Output from lower level is input to
higher level; top level is final output (Jurafsky and
Martin, Figure 9.10)

CSCI 4152/6509, Vlado Keselj Lecture 18 3 / 51

Bidirectional RNN

Bidirectional RNN; trained forward and backward
with concatenated output (Jurafsky and Martin,
Figure 9.11)

Output can be used for sequence labeling, for
example

CSCI 4152/6509, Vlado Keselj Lecture 18 4 / 51

LSTM — Long Short-Term Memory

LSTM: xt is input, ht−1 is previous hidden state, ct−1
is previous long-term context, ht and ct is output
(Jurafsky and Martin, Figure 9.13)

CSCI 4152/6509, Vlado Keselj Lecture 18 5 / 51

LSTM Cell

Another view of LSTM cell (source Wikipedia)

CSCI 4152/6509, Vlado Keselj Lecture 18 6 / 51

Transformers

Transformers map a sequence of input vectors to a
sequence of output vectors of the same length

x1 x2 . . . xn

↓ ↓ ... ↓
y1 y2 . . . yn

CSCI 4152/6509, Vlado Keselj Lecture 18 7 / 51

Self-Attention Layer

(Jurafsky and Martin)

CSCI 4152/6509, Vlado Keselj Lecture 18 8 / 51

Self-Attention Training

score(xi, xj) = xi · xj
αij = softmax(score(xi, xj)) ∀j ≤ i

yi =
∑
j≤i

αijxj

CSCI 4152/6509, Vlado Keselj Lecture 18 9 / 51

Transformer Block

(Jurafsky and Martin)
CSCI 4152/6509, Vlado Keselj Lecture 18 10 / 51

Multihead Attention Layer

(Jurafsky and Martin)
CSCI 4152/6509, Vlado Keselj Lecture 18 11 / 51

Encoding Word Positions in Transformers

from: Jurafsky and Martin, 3rd ed. draft

CSCI 4152/6509, Vlado Keselj Lecture 18 12 / 51

Training Transformer as a Language Model

from: Jurafsky and Martin, 3rd ed. draft

CSCI 4152/6509, Vlado Keselj Lecture 18 13 / 51

Text Completion with Transformers

from: Jurafsky and Martin, 3rd ed. draft

CSCI 4152/6509, Vlado Keselj Lecture 18 14 / 51

Parsing Natural Languages

Must deal with possible ambiguities

Decide whether to make a phrase structure or
dependency parser
When parsing NLP, there are generally two
approaches:

1 Backtracking to find all parse trees
2 Chart parsing

Prolog provides a very expressive way to NL parsing

FOPL is also used to represent semantics

CSCI 4152/6509, Vlado Keselj Lecture 18 15 / 51

Parsing with Prolog

We will go over a brief Prolog review
I more details are provided in the lab

Implicative normal form:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1 ∨ q2 ∨ . . . ∨ qm

If m ≤ 1, then the clause is called a Horn clause.

If resolution is applied to two Horn clauses, the result
is again a Horn clause.

Inference with Horn clauses is relatively efficient

CSCI 4152/6509, Vlado Keselj Lecture 18 16 / 51

Rules

A Horn clause with m = 1 is called a rule:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1

It is expressed in Prolog as: q1 :- p1, p2, ..., p_n.

CSCI 4152/6509, Vlado Keselj Lecture 18 17 / 51

Facts

A clause with m = 0 is called a fact:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ >

is expressed in Prolog as: p1, p2, ..., p_n.

or :- p1, p2, ..., p_n.

and it is called a fact.

CSCI 4152/6509, Vlado Keselj Lecture 18 18 / 51

Rabbit and Franklin Example

The ‘rabbit and franklin’ example in Prolog:
hare(rabbit).

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

Save the program in a file, load the file.
After loading the file, on Prolog prompt, type:
faster(rabbit,franklin).

Try: faster(X,franklin). and faster(X,Y).

CSCI 4152/6509, Vlado Keselj Lecture 18 19 / 51

Rabbit and Franklin Example
hare(rabbit).

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

?- faster(rabbit,franklin).

CSCI 4152/6509, Vlado Keselj Lecture 18 20 / 51

Rabbit and Franklin Example
hare(rabbit).

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

?- faster(X,franklin).

CSCI 4152/6509, Vlado Keselj Lecture 18 21 / 51

Rabbit and Franklin Example
hare(rabbit).

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

?- faster(X,Y).

CSCI 4152/6509, Vlado Keselj Lecture 18 22 / 51

Unification and Backtracking

Two important features of Prolog: unification and
backtracking

Prolog expressions are generally mathematical
symbolic expressions, called terms

Unification is an operation of making two terms
equal by substituting variables with some terms

Backtracking: Prolog uses backtracking to satisfy
given goal; i.e., to prove given term expression, by
systematically trying different rules and facts, which
are given in the program

CSCI 4152/6509, Vlado Keselj Lecture 18 23 / 51

Example in Unification and Backtracking

What happens after we type:
?- faster(rabbit,franklin).

Prolog will search for a ‘matching’ fact or head of a
rule:
faster(rabbit,franklin) and
faster(X,Y) :- ...

‘Matching’ here means unification

After unifying faster(rabbit,franklin) and
faster(X,Y) with substitution X←rabbit and
Y←franklin, the rule becomes:
faster(rabbit,franklin) :-

hare(rabbit), turtle(franklin).

CSCI 4152/6509, Vlado Keselj Lecture 18 24 / 51

Example (continued)

Prolog interpreter will now try to satisfy predicates at
the right hand side: hare(rabbit) and
turtle(franklin) and it will easily succeed based
on the same facts

If it does not succeed, it can generally try other
options through backtracking

CSCI 4152/6509, Vlado Keselj Lecture 18 25 / 51

Variables in Prolog

Variable names start with uppercase letter or
underscore (‘ ’)

is a special, anonymous variable

Examples: ?- faster(rabbit,franklin).

Yes ;

...

?- faster(rabbit,X).

X = franklin ;

...

?- hare(X).

X = rabbit ;

CSCI 4152/6509, Vlado Keselj Lecture 18 26 / 51

Lists (Arrays), Structures.

Lists are implemented as linked lists. Structures (records)
are expressed as terms. Examples:
In program: person(john,public,’123-456’).

Interactively: ?- person(john,X,Y).

[] is an empty list.
A list is created as a nested term, usually a special
function ‘.’ (dot):
?- is_list(.(a, .(b, .(c, [])))).

CSCI 4152/6509, Vlado Keselj Lecture 18 27 / 51

List Notation

(.(a, .(b, .(c, []))) is the same as [a,b,c]

This is also equivalent to:
[a | [b | [c | []]]]

or
[a, b | [c]]

A frequent Prolog expression is: [H|T]

where H is head of the list, and T is the tail, which is
another list.

CSCI 4152/6509, Vlado Keselj Lecture 18 28 / 51

Example: Calculating Factorial

factorial(0,1).

factorial(N,F) :- N>0, M is N-1, factorial(M,FM),

F is FM*N.

After saving in factorial.prolog and loading to Prolog:
?- [’factorial.prolog’].

% factorial.prolog compiled 0.00 sec, 1,000 bytes

Yes

?- factorial(6,X).

X = 720 ;

CSCI 4152/6509, Vlado Keselj Lecture 18 29 / 51

Example: List Membership

Example (testing membership of a list):

member(X, [X|_]).

member(X, [_|L]) :- member(X,L).

CSCI 4152/6509, Vlado Keselj Lecture 18 30 / 51

Natural Language Syntax

Syntax — NLP level of processing
I Syntax = sentence structure; i.e., study of the

phrase structure

sýntaxis (Greek) — “setting out together,
arrangement”

Words are not randomly ordered — word order is
important and non-trivial

There are “free-order” languages (e.g., Latin,
Russian), but they are not completely order free.

Reading: Chapter 12 (JM book) or Ch.17 (JM
on-line)

CSCI 4152/6509, Vlado Keselj Lecture 18 31 / 51

Phrase Structure and Dependency Structure

Two ways of organizing sentence structure:
I phrase structure
I dependency structure

Phrase structure
I nested consecutive groupings of words

Dependency structure
I dependency relations between words

The main NLP task at the syntax level: parsing
I given a sentence, find the correct structure

CSCI 4152/6509, Vlado Keselj Lecture 18 32 / 51

Phrase Structure

Phrase Structure Grammars or Context-Free
Grammars
A hierarchical view of sentence structure:

I words form phrases
I phrases form clauses
I clauses form sentences

Parsing: given a sentence find the context-free parse
tree; a.k.a. phrase structure parse tree

CSCI 4152/6509, Vlado Keselj Lecture 18 33 / 51

Example Sentence

the man took the book

CSCI 4152/6509, Vlado Keselj Lecture 18 34 / 51

Phrase Structure Parse Tree Examples

Phrase Structure parse trees are also called
Context-Free parse trees

This example is from the seminal Noam Chomsky’s
paper in 1956:

Sentence

NP

the man

VP

Verb

took

NP

the book

CSCI 4152/6509, Vlado Keselj Lecture 18 35 / 51

Parse Tree Examples (Penn treebank tagset)

• Using Penn treebank tagset:
S

NP

DT

the

NN

man

VP

VBD

took

NP

DT

the

NN

book

CSCI 4152/6509, Vlado Keselj Lecture 18 36 / 51

Parse Tree Examples (‘triangle’ notation)

• Sometimes we simplify a parse tree by ignoring a part
of the structure, as in:

S

NP

DT

the

NN

man

VP

VBD

took

NP

the book

CSCI 4152/6509, Vlado Keselj Lecture 18 37 / 51

Parse Tree Example 2 (‘butterfly’ sentence)

That man caught the butterfly with a net

CSCI 4152/6509, Vlado Keselj Lecture 18 38 / 51

Parse Tree Example 2 (‘butterfly’)

• Another example:
S

NP

DT

That

NN

man

VP

VBD

caught

NP

DT

the

NN

butterfly

CSCI 4152/6509, Vlado Keselj Lecture 18 39 / 51

Parse Tree Example3 (‘butterfly’ extended)

• Extending the previous example:
S

NP

DT

That

NN

man

VP

VBD

caught

NP

DT

the

NN

butterfly

PP

IN

with

NP

DT

a

NN

net

CSCI 4152/6509, Vlado Keselj Lecture 18 40 / 51

Parse Tree Example (root bottom)

• Representing parse trees in the bottom-up direction:

DT NN VBD DT NN IN DT

That man caught the butterfly with a

NN

net.

NP NP NP

PP

VP

S

CSCI 4152/6509, Vlado Keselj Lecture 18 41 / 51

Some Basic Notions in Context-Free Trees

Context-free trees, also called phrase structure trees,
parse trees, syntactic trees

Node relations: root, leaf, parent (mother), child
(daughter), sibling, ancestor, descendant, dominate

Context-free grammar

Consider for example the context-free grammar
induced by the last parse tree shown

CSCI 4152/6509, Vlado Keselj Lecture 18 42 / 51

Context-Free Grammars (CFG) Review

CFG is a tuple (V, T, P, S), where

V is a finite set of variables or non-terminals;
e.g., V = {S ,NP ,DT ,NN ,VP ,VBD,PP , IN}
T is a finite set of terminals, words, or lexemes;
e.g., T = {That, man, caught, the, butterfly, with, a,
net}
P is a set of rules or productions in the form
X → α, where X ∈ V and α ∈ (V ∪ T)∗; e.g.,
P = {S → NP VP , NP → DT NN , DT →
That, NP → ε}
S is the start symbol S ∈ V

CSCI 4152/6509, Vlado Keselj Lecture 18 43 / 51

Some Notions about CFGs

CFG, also known as Phrase-Structure Grammar
(PSG)

Equivalent to BNF (Backus-Naur form)

Idea from Wundt (1900), formally defined by
Chomsky (1956) and Backus (1959)

Typical notation (V, T, P, S); also (N,Σ, R, S)

CSCI 4152/6509, Vlado Keselj Lecture 18 44 / 51

CFG Derivations

Direct derivation, derivation

Example of a direct derivation: S ⇒ NP VP

Example of a derivation (beginning of):
S ⇒ NP VP ⇒ DT NN VP ⇒ That NN VP ⇒
. . .

Left-most and right-most derivation

CSCI 4152/6509, Vlado Keselj Lecture 18 45 / 51

Parse Tree Example (revisited)

DT NN VBD DT NN IN DT

That man caught the butterfly with a

NN

net.

NP NP NP

PP

VP

S

CSCI 4152/6509, Vlado Keselj Lecture 18 46 / 51

A Derivation Example (random)

DT NN VBD DT NN IN DT

That man caught the butterfly with a

NN

net.

NP NP NP

PP

VP

S

CSCI 4152/6509, Vlado Keselj Lecture 18 47 / 51

Leftmost Derivation Example

DT NN VBD DT NN IN DT

That man caught the butterfly with a

NN

net.

NP NP NP

PP

VP

S

CSCI 4152/6509, Vlado Keselj Lecture 18 48 / 51

Rightmost Derivation Example

DT NN VBD DT NN IN DT

That man caught the butterfly with a

NN

net.

NP NP NP

PP

VP

S

CSCI 4152/6509, Vlado Keselj Lecture 18 49 / 51

Leftmost Derivation Example

S ⇒ NP VP ⇒ DT NN VP ⇒ ThatNN VP ⇒ That manVP

⇒ That manVBD NP PP

⇒ That man caughtNP PP

⇒ That man caughtDT NN PP

⇒ That man caught theNN PP

⇒ That man caught the butterflyPP

⇒ That man caught the butterfly IN NP

⇒ That man caught the butterfly withNP

⇒ That man caught the butterfly withDT NN

⇒ That man caught the butterfly with aNN

⇒ That man caught the butterfly with a net

CSCI 4152/6509, Vlado Keselj Lecture 18 50 / 51

Some Notions about CFGs (continued)

Language generated by a CFG

Context-Free languages

Parsing task

Ambiguous sentences

Ambiguous grammars

Inherently ambiguous languages

CSCI 4152/6509, Vlado Keselj Lecture 18 51 / 51

