
Lecture 18 p.1

Faculty of Computer Science, Dalhousie University 18-Nov-2024
CSCI 4152/6509 — Natural Language Processing

Lecture 18: Deep Learning and NLP; DCG and PCFG

Location: Carleton Tupper Building Theatre C Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

Neural networks and deep learning
– Applications
– Some main developments
– Large deep learning models
– Exponential growth in size of LLMs
– Biological neuron, perceptron, feed-forward network
– Activation functions, softmax function
– Neural language model, RNN

Slide notes:

Stacked RNN
– Stacked RNN: Output from lower level is input to higher level;

top level is final output (Jurafsky and Martin, Figure 9.10)

Slide notes:

Bidirectional RNN
– Bidirectional RNN; trained forward and backward with

concatenated output (Jurafsky and Martin, Figure 9.11)
– Output can be used for sequence labeling, for example
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Slide notes:

LSTM — Long Short-Term Memory
– LSTM: xt is input, ht−1 is previous hidden state, ct−1 is previous

long-term context, ht and ct is output (Jurafsky and Martin,
Figure 9.13)

Slide notes:

LSTM Cell
– Another view of LSTM cell (source Wikipedia)

Slide notes:

Transformers
– Transformers map a sequence of input vectors to a sequence of

output vectors of the same length

x1 x2 . . . xn

↓ ↓
... ↓

y1 y2 . . . yn

Slide notes:

Self-Attention Layer

(Jurafsky and Martin)
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Slide notes:

Self-Attention Training
score(xi, xj) = xi · xj

αij = softmax(score(xi, xj)) ∀j ≤ i

yi =
∑
j≤i

αijxj

Slide notes:

Transformer Block

(Jurafsky and Martin)

Slide notes:

Multihead Attention Layer

(Jurafsky and Martin)
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Slide notes:

Encoding Word Positions in Transformers

from: Jurafsky and Martin, 3rd ed. draft

Slide notes:

Training Transformer as a Language Model

from: Jurafsky and Martin, 3rd ed. draft

Slide notes:

Text Completion with Transformers

from: Jurafsky and Martin, 3rd ed. draft
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Part IV

Parsing
In this part, we will move a level above in processing natural languages—parsing, or syntactic processing. For some
practical purposes, we will start with an brief introduction to the Prolog programming language.

Parsing Natural Languages

– Must deal with possible ambiguities
– Decide whether to make a phrase structure or dependency parser
– When parsing NLP, there are generally two approaches:

1. Backtracking to find all parse trees
2. Chart parsing

– Prolog provides a very expressive way to NL parsing
– FOPL is also used to represent semantics

18 A Brief Introduction to Prolog
In this section, we will first go over a brief Prolog review. Prolog is described in some more details in the lab tutorial.

Slide notes:

Parsing with Prolog
– We will go over a brief Prolog review

– more details are provided in the lab
– Implicative normal form:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1 ∨ q2 ∨ . . . ∨ qm

– If m ≤ 1, then the clause is called a Horn clause.
– If resolution is applied to two Horn clauses, the result is again a

Horn clause.
– Inference with Horn clauses is relatively efficient

An implicative normal form is a mathematical logic formula, which is a conjunction of smaller formulae called
clauses, where each clause is in the following form:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1 ∨ q2 ∨ . . . ∨ qm

where pi and qi are simple logical statements called propositions.

Note: Just as a reminder, the operator ∧ is the logical AND, operator ∨ is the logical OR, and the operator⇒ is the
logical “implies” operator.

If m ≤ 1, then the clause is called a Horn clause.

When resolution is applied to two Horn clauses, the result is again a Horn clause. Inference on Horn clauses is
relatively efficient.
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Rules

A Horn clause with m = 1 is called a rule:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1

It is expressed in Prolog as:

q1 :- p1, p2, ..., p_n.

Facts

A clause with m = 0 is called a fact:
p1 ∧ p2 ∧ . . . ∧ pn ⇒ >

is expressed in Prolog as:

p1, p2, ..., p_n.

or

:- p1, p2, ..., p_n.

and it is called a fact.

Running Prolog

It is covered in more details in the lab how to run Prolog interpreter. We use a Prolog interpreter called SWI Prolog
and it is available on the timberlea server. The lab also covers how to write a program, load it and execute it
using interpreter.

Rabbit and Franklin Example

The ‘rabbit and franklin’ example in Prolog:

hare(rabbit).
turtle(franklin).
faster(X,Y) :- hare(X), turtle(Y).

Save the program in a file, e.g., named file.prolog and load the file using the command [’file.prolog’].
The Prolog interpreter uses prompt ‘?-’. After loading the file, on Prolog prompt, type:

faster(rabbit,franklin).

After this there is some difference between Prolog interpreters. The newest SWI-Prolog will simply print ‘true’
and go back to the prompt. The previous version of SWI-Prolog would print ‘Yes’ waiting for user input. The user
should type semicolon (;) and then the Prolog prompt would appear.

Try faster(X,franklin). and faster(X,Y). in the similar fashion (keep pressing the semicolon if user
input is required until the Prolog prompt is obtained in the both cases).
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Slide notes:

Unification and Backtracking
– Two important features of Prolog: unification and backtracking
– Prolog expressions are generally mathematical symbolic

expressions, called terms
– Unification is an operation of making two terms equal by

substituting variables with some terms
– Backtracking: Prolog uses backtracking to satisfy given goal;

i.e., to prove given term expression, by systematically trying
different rules and facts, which are given in the program

Example in Unification and Backtracking

– What happens after we type:
?- faster(rabbit,franklin).

– Prolog will search for a ‘matching’ fact or head of a rule:
faster(rabbit,franklin) and
faster(X,Y) :- ...

– ‘Matching’ here means unification
– After unifying faster(rabbit,franklin) and faster(X,Y) with substitution X←rabbit and
Y←franklin, the rule becomes:
faster(rabbit,franklin) :- hare(rabbit), turtle(franklin).

Example (continued)

– Prolog interpreter will now try to satisfy predicates at the right hand side: hare(rabbit) and turtle(franklin)
and it will easily succeed based on the same facts

– If it does not succeed, it can generally try other options through backtracking

Variables

Variable names in Prolog start with an uppercase letter or an underscore character (‘ ]). The variable name _ (just an
underscore) is special because it denotes a special, so-called anonymous variable. Two occurrences of this variable
can represent arbitrary different values, and there is no connection between them. This variable is used a placeholder
in terms for part that is generally ignored.

Slide notes:

Variables in Prolog
– Variable names start with uppercase letter or underscore (‘ ’)
– is a special, anonymous variable
– Examples:

?- faster(rabbit,franklin).
Yes ;
...
?- faster(rabbit,X).
X = franklin ;
...
?- hare(X).
X = rabbit ;
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Lists (Arrays), Structures.

Lists are implemented as linked lists. Structures (records) are expressed as terms. Examples:

In program: person(john,public,’123-456’).

Interactively: ?- person(john,X,Y).

[] is an empty list.

A list is created as a nested term, usually a special function ‘.’ (dot):

?- is_list(.(a, .(b, .(c, [])))).

List Notation

(.(a, .(b, .(c, []))) is the same as [a,b,c]

This is also equivalent to:

[ a | [ b | [ c | [] ]]]

or

[ a, b | [ c ] ]

A frequent Prolog expression is: [H|T]
where H is head of the list, and T is the tail, which is another list.

Example: Calculating Factorial

factorial(0,1).
factorial(N,F) :- N>0, M is N-1, factorial(M,FM),

F is FM*N.

After saving in factorial.prolog and loading to Prolog:

?- [’factorial.prolog’].
% factorial.prolog compiled 0.00 sec, 1,000 bytes

Yes
?- factorial(6,X).

X = 720 ;

Example: List Membership

Example (testing membership of a list):

member(X, [X|_]).
member(X, [_|L]) :- member(X,L).
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19 Natural Language Syntax
Slide notes:

Natural Language Syntax
– Syntax — NLP level of processing

– Syntax = sentence structure; i.e., study of the phrase
structure

– sýntaxis (Greek) — “setting out together, arrangement”
– Words are not randomly ordered — word order is important and

non-trivial
– There are “free-order” languages (e.g., Latin, Russian), but they

are not completely order free.
– Reading: Chapter 12 (JM book) or Ch.17 (JM on-line)

Phrase Structure and Dependency Structure

– Two ways of organizing sentence structure:
– phrase structure
– dependency structure

– Phrase structure
– nested consecutive groupings of words

– Dependency structure
– dependency relations between words

– The main NLP task at the syntax level: parsing
– given a sentence, find the correct structure

Phrase Structure

– Phrase Structure Grammars or Context-Free Grammars
– A hierarchical view of sentence structure:

– words form phrases
– phrases form clauses
– clauses form sentences

– Parsing: given a sentence find the context-free parse tree; a.k.a. phrase structure parse tree

Phrase Structure Parse Tree Examples

– Phrase Structure parse trees are also called Context-Free parse trees
– This example is from the seminal Noam Chomsky’s paper in 1956:

Sentence

NP

the man

VP

Verb

took

NP

the book

The above example is from the seminal article of Noam Chomsky, “Three models for the description of language”
published in IRE Transactions on Information Theory in 1956.

If we follow more closely the Penn treebank tagset, we would rewrite the above parse tree as follows:
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Parse Tree Examples (Penn treebank tagset)

• Using Penn treebank tagset:

S

NP

DT

the

NN

man

VP

VBD

took

NP

DT

the

NN

book

Parse Tree Examples (‘triangle’ notation)

• Sometimes we simplify a parse tree by ignoring a part of the structure, as in:

S

NP

DT

the

NN

man

VP

VBD

took

NP

the book

Parse Tree Example 2 (‘butterfly’)

• Another example:

S

NP

DT

That

NN

man

VP

VBD

caught

NP

DT

the

NN

butterfly

Parse Tree Example3 (‘butterfly’ extended)

• Extending the previous example:
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S

NP

DT

That

NN

man

VP

VBD

caught

NP

DT

the

NN

butterfly

PP

IN

with

NP

DT

a

NN

net

Parse Tree Example (root bottom)

• Representing parse trees in the bottom-up direction:

DT NN VBD DT NN IN DT

That man caught the butterfly with a

NN

net.

NP NP NP

PP

VP

S

Some Basic Notions in Context-Free Trees

– Context-free trees, also called phrase structure trees, parse trees, syntactic trees
– Node relations: root, leaf, parent (mother), child (daughter), sibling, ancestor, descendant, dominate
– Context-free grammar
– Consider for example the context-free grammar induced by the last parse tree shown

20 Context-Free Grammars (CFG) Review

Context-Free Grammars (CFG) Review

CFG is a tuple (V, T, P, S), where

– V is a finite set of variables or non-terminals; e.g., V = {S,NP,DT,NN,VP,VBD,PP, IN}
– T is a finite set of terminals, words, or lexemes; e.g., T = {That, man, caught, the, butterfly, with, a, net}
– P is a set of rules or productions in the form X → α, where X ∈ V and α ∈ (V ∪ T )∗; e.g.,
P = {S→ NP VP, NP→ DT NN, DT → That, NP→ ε}

– S is the start symbol S ∈ V
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Some Notions about CFGs

– CFG, also known as Phrase-Structure Grammar (PSG)
– Equivalent to BNF (Backus-Naur form)
– Idea from Wundt (1900), formally defined by Chomsky (1956) and Backus (1959)
– Typical notation (V, T, P, S); also (N,Σ, R, S)

CFG (Context-Free Grammar) is also knows as the Phrase-Structure Grammar (PCG). It is usually referred to
as CFG in the Formal Language theory and Computer Science in general, while the term PCG is used in some
Computational Linguistic and Linguistic circles. The idea of CFG is traced to Wundt in 1900, but the exact created
of the formalism is attributed to Noam Chomsky (1956), who worked in the area of Natural Language Processing,
and also to John Backus, who worked in the area of Programming Languages.

CFG Derivations

CFG Derivations

– Direct derivation, derivation
– Example of a direct derivation: S⇒ NP VP
– Example of a derivation (beginning of):

S⇒ NP VP⇒ DT NN VP⇒ That NN VP⇒ . . .
– Left-most and right-most derivation

Parse Tree Example (revisited)

DT NN VBD DT NN IN DT

That man caught the butterfly with a

NN

net.

NP NP NP

PP

VP

S
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Leftmost Derivation Example

S ⇒ NP VP ⇒ DT NN VP ⇒ ThatNN VP ⇒ That manVP
⇒ That manVBD NP PP

⇒ That man caughtNP PP

⇒ That man caughtDT NN PP

⇒ That man caught theNN PP

⇒ That man caught the butterflyPP
⇒ That man caught the butterfly IN NP

⇒ That man caught the butterfly withNP
⇒ That man caught the butterfly withDT NN

⇒ That man caught the butterfly with aNN
⇒ That man caught the butterfly with a net

Some Notions about CFGs (continued)

– Language generated by a CFG
– Context-Free languages
– Parsing task
– Ambiguous sentences
– Ambiguous grammars
– Inherently ambiguous languages

A language over a set of words (or terminals) in this context (i.e., the formal language context) is any set of strings
of words, where a string of words is any finite, possibly empty, sequence of words.

The language generated by a CFG is the set of all strings of words that can be derived from the start symbol using a
derivation.

A language is a context-free language, if there is a CFG that generates this language.

The parsing problem for a CFG is the problem of finding all parse trees of an arbitrary string of words, which may
include an empty set of trees if the string does not belong to the language generated by the grammar.
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