Lecture 20 p.1

Faculty of Computer Science, Dalhousie University 25-Nov-2024
CSCI 4152/6509 — Natural Language Processing

Lecture 20: Syntax of Natural Languages; CYK Algorithm

Location: Carleton Tupper Building Theatre C Instructor: Vlado Keselj
Time: 16:05 — 17:25

Previous Lecture

Bracket representation of a parse tree
Parsing NL in Prolog using Difference Lists
— Definite Clause Grammar (DCG)
— Basic DCG example
— Building a parse tree in DCG
— Agreement example in DCG
— Embedded code in DCG
— Probabilistic Context-Free Grammars (PCFG)
PCFG definition
PCFG as a probabilistic model
— Typical phrase structure rules in English (started): S

Noun Phrase (NP)

— typically: pronouns, proper nouns, or determiner-nominal construction
— some typical rules

NP -> PRP e.g.: you

NP -> NNP | NNPS e.g.: Halifax

NP —-> PDT? DT JJx NN PP=x

NP —> NN NN e.g.: computer science

— in the last rule, we use regular expression notation to describe a set of different rules
— example: all the various flights from Halifax to Toronto

— example 2: all the thick red books on the shelves in the library

— determiners and nominals

— modifiers before head noun and after head noun

— postmodifier phrases

NP -> DT JJ* NN RelC

Examples of determiners: a stop, the flights, this flight

The determiners can be more complex; e.g., they can consist of a noun phrase and posessive ending ’s, such as
“United’s flight” and “Denver’s mayor’s mother’s canceled flight”.

However, we will not label those structures as determiners in a context-free parse trees.

November 27, 2024, CSCI 4152/6509 http://web.cs.dal.ca/~vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 20 p.2

Relative Clauses

— RelC — relative clause
— clause (sentence-like phrase) following a noun phrase

— example: gerundive relative clause: flights arriving after 5pm

— example: infinitive relative clause: flights to arrive tomorrow

— example: restrictive relative clause: flight that was canceled yesterday

Verb Phrase (VP)

CSCI 4152/6509

— organizes arguments around the verb
— typical rules

VP -> Verb

VP

VP

VP

VP
VP

Verb

Verb

Verb

Verb
Verb

NP

NP NP

PP

NP PP«
NP NP PP«

intransitive verbs;

e.g.: disappear

transitive verbs:

e.g.: prefer a morning flight
ditransitive verbs:

e.g.: send me an email
sentential complements

— sentential complements, e.g.: You said these were two flights that were the cheapest.

Prepositional Phrase (PP)

PP -> IN NP

Adjective Phrase (ADJP)

— less common
— examples:

— She is very sure of herself.

Adverbial Phrase (ADVP)

— Example:

(S

Preposition (IN) relates a noun phrase to other word or phrase
Prepositional Phrase (PP) consists of a preposition and the noun phrase which is an object of that preposition
There is typically only one rule for the prepositional phrase:

examples: from Halifax, before tomorrow, in the city
PP-attachment ambiguity

— ...the least expensive fare ...

(NP preliminary findings)

(VP were reported
(NP a year) ago)))

(ADVP

— another example: years ago

CSCI 4152/6509 Lecture 20 p.3

Overview of Syntactic Tags

Tag Description

S Sentence

NP Noun Phrase

VP Verb Phrase

PP Prepositional Phrase
ADJP | Adjective Phrase
ADVP | Adverbial Phrase

About Typical Rules

Only some typical rules are presented

For example: We see the cat, and you see a dog.

— The sentence could be described with: S -> S CC S

Relative clauses are labeled in Penn treebank using SBAR () non-terminal; e.g.:

(S (NP (NP Lorillard Inc.)
(NP (NP the unit)
(PP of (NP (ADJP New York-based)
Loews Corp.)))
(SBAR that
(S (NP xgapx)
(VP makes (NP Kent cigarettes))))

)
(VP stopped (VP using (NP crocidolite))))

24 Heads and Dependency

Heads and Dependency

— a phrase typically has a central word called head, while other words are direct or indirect dependents
— ahead is also called a governor, although sometimes these concepts are considered somewhat different
— phases are usually called by their head; e.g., the head of a noun phrase is a noun

Example with Heads and Dependencies

— the parse tree of “That man caught the butterfly with a net.”
— annotate dependencies, head words
That man caught t}‘le butterfly w}th 2‘1 net.

DT NN VBD DT NN IN DT NN

VAN,

[butterfly] [net]

PP[with]

VP
__—— [caught]

S [caught]

Lecture 20 p.4 CSCI 4152/6509

Head Feature Principle

The Head Feature Principle is the principle that a constituent in a parse tree will have the same set of some
characteristic features as its head child. The features that are shared in this way between parent and head child are
called head features.

The head feature principle is particularly emphasized in some grammar formalisms, such as the Head-driven Phrase
Structure Grammar (HPSG).

If we use a context-free grammar, or a similar grammar formalism, to parse natural language, an interesting question
is how to detect head-dependent relations. We can achieve it by annotating head child in each context-free rule.
Sometimes in literature, these heads are labeled on the right-hand side of each rule using a subscript H, as in:

NP — DT NNy

or, using a Head-driven Phrase Structure Grammar (HPSG) style, they are labeled using a letter H before the child
constituent, as in:

INP| — [DT] H|NN]

Dependency Tree

— dependency grammar
— example with “That man caught the butterfly with a net.”
That\\ a\

man the net

butterfly with

//

caught

A dependency tree consists of direct dependence relations between words in a sentences, and the words are the
nodes of the tree. A typed dependency tree also includes labels of the edges, describing the types of dependencies. A
dependency tree can be easily produced from a context-free parse tree in which the heads of the phrases are labelled.

A dependency grammar is a grammar that defines rules that are used to form a dependency tree.

Arguments and Adjuncts

— There ar two kinds of dependents:
1. arguments, which are required dependents, e.g.,
We deprived him of food.
2. adjuncts, which are not required;
— they have a “less tight” link to the head, and
— can be moved around more easily
Example:
We deprived him of food yesterday in the restaurant.

CSCI 4152/6509 Lecture 20 p.5

25 CYK Chart Parsing Algorithm

Slide notes:

Efficient Inference in PCFG Model
— Using backtracking is not efficient approach
— Chart parsing is an efficient approach
— We will take a look at the CYK chart parsing algorithm

CYK Chart Parsing Algorithm

— When parsing NLP, there are generally two approaches:
1. Backtracking to find all parse trees
2. Chart parsing
CYK algorithm: a simple chart parsing algorithm
CYK: Cocke-Younger-Kasami algorithm
CYK can be applied only to a CNF grammar

The CYK algorithm (Cocke-Younger-Kasami) is a well-known efficient parsing algorithm. The algorithm has a
running-time complexity of O(n?) for a sentence of length n.

CYK can be applied only to a CNF (Chomsky Normal Form) grammar, so if the grammar is not already in CNF, we
would have to convert it to CNF. A Context-Free Grammar is in CNF if all its rules are either of the form A — B C,
where A, B, and C' are nonterminals, or A — w, where A is a nonterminal and w is a terminal. If a CFG is not in
CNEF, it can be converted into CNF.

Chomsky Normal Form

— all rules are in one of the forms:
1. A — BC, where A, B, and C are nonterminals, or
2. A — w, where A is a nonterminal and w is a terminal
— If a grammar is not in CNF, it can be converted to it

Is the following grammar in CNF?

S — NPVP VP — VNP N — time vV — like
NP — N VP — VPP N — arrow V — flies
NP — NN PP — PNP N — flies P like
NP — DN D — an

How about this grammar? (Is it in CNF?)

S — NPVP VP — VNP N — time \" like
NP — time VP — VPP N — arrow V — flies
NP — NN PP — PNP N — flies P — lke
NP — DN D — an

Note: What if the grammar is not in CNF

There is a standard algorithm for converting arbitrary CFG into CNF. The problem is: How to calculate probabilities
of the rules in the new grammar? One way is to sample from the old grammar, and to estimate probabilities in the

Lecture 20 p.6 CSCI 4152/6509

new grammar by parsing the sample sentences and counting. The probabilities can also be calculated directly, but it
is not a straightforward task.

Here are the steps needed for conversion of an arbitrary CFG into CNF. This is just a partial sketch of the algorithm:
calculating probabilities of the new rules in the first two steps is not trivial and it is not given.

Eliminate empty rules N — ¢

Find all “nullable” nonterminals, i.e., terminals N such that N =* e.

From each rule A — X ... X,, create new rules by striking out some nullable nonterminals. This is done for all
combination of nonterminals in the rule, except for striking out all X ... X, if they are all nullable.

Remove empty rules.

If the start symbol is nullable, add S — ¢, and treat that as a special case.

Eliminate unit rules N — M

For any two variables A and B, such that A =* B, for all non-unit rules B — ¢, we add A — ¢. Remove unit
rules.

All possible derivations A =* B are easy to find since the empty rules are already eliminated.

Eliminate terminals in rules, except A — w

For each terminal w that appears on the right hand side of some rule with some other symbols, we introduce a new
nonterminal N,,, and a rule N,, — w with probability 1. Then we replace w in all other rules with N,,.

Eliminate rules A — B1Bs ... B, (n > 2)

Foreachrule A — B1Bs ... B, (n > 2), we introduce n — 2 new nonterminals X7, ..., X,,_», and replace this rule
with the following rules: A — By X1, X1 — B2 X, ... X,,_2 — B,,_1B,, and assign the following probabilities
to them: P(A — B1X;) =P(A — B1B>...B,),P(X; = B:X5)=1,...P(X;,_2 = B,_1B,) = 1.

CYK Example

Let us first show the CYK algorithm on an example, before presenting it in detail. We assume that the following
grammar in CNF is given:

S — NPVP VP — VNP N — time V — like
NP — time VP — VPP N — arrow V — flies
NP — NN PP — PNP N — flies P — like
NP — DN D — an

CYK Example (continued): time flies like an arrow

Using this grammar, we want to parse the sentence ‘time flies like an arrow’. We first tokenize the sentence by
breaking into the words, and we will enumerate all boundaries between words, starting with the start of the first
word in the following way:

o time ; flies 5 like 3 an 4 arrow 5

We organize parsing around a table, called parsing chart or simply chart, as follows:

CSCI 4152/6509 Lecture 20 p.7

time flies like an arrow
0 1 2 3 4 5

|0,1 | 1.2 |2,3 |3,4 |4~5 |

Each entry of the parsing chart is called a chart entry. In the empty chart above, we added numbers in the first row
of chart entries, which denote spans that are associated with the entries. The first row of chart entries have all spans
of lenght 1.

To fill the first row of the table we look at the words and all rules of the form N — w, where w is the appropriate
word, and we add the corresponding non-terminal NV to the appropriate chart entry. This is how we fill the first row
of the chart and obtain the following:

time flies like an arrow
0 1 2 3 4 5

|NP,N|V,N|V,P | D | N |

Completely filled chart looks as follows:

time flies like an arrow

v 1 —T] w]

| |_— | epve |
L—1 w |
s |

To fill the second row, we look at the span covered by the chart entry. For example, the first chart entry in the second
row, covers the span 0-2, as shown below:

time flies like an arrow
0 1 2 3 4 5

e [vw | T
_—

By finding all pairs of non-terminals from the two chart entries that cover sub-spans 0-1 and 1-2, we find pairs:
NPV

NP N

NV

NN

and then we look for the rules, for which one of these sequences is on the right-hand side. We can find the following
rule:

NP — NN

and we add the non-terminal NP to the entry for the span 0-2. In some cases, we will not find any matching rules
and we obtain empty chart entries, which are marked by one crossing diagonal:

Lecture 20 p.8 CSCI 4152/6509

We fill out similarly rows after 2, but it gets a bit more complicated since we will have more than one pair of
sub-spans that correspond to a chart entry. For example, the first entry of the third row covers the span 0-3, and then
we need to look at the pairs of entries for span 0-1 and 1-3, and 0-2 and 2-3, as shown:

time flies like time flies like
0 1 2 3 0 1

NP,N l\ /I V,P

—T T

0 1 1 3
In the first case, when we look at entries and Z we do not get any pairs of non terminals. In

the second case, we look at the entries 0 NP ’ and ? V,P ¥ and get the following pairs of non-terminals:
NPV
NP P
for which we cannot find any appropriate rules, whose right-hand sides correspond to these pairs. This is why the

0 3
entry I:] remains empty, as follows:

time flies like an arrow
0 1 2 3 4 5

[wex [vnx Jve | | N~ |

(v [T v]
—

(38}
w

Similarly, we fill the next entry covering the span 1—4 by looking at the pairs of entries covering spans 1-2 and 2—4
(labeled with ‘a’ in the figure below), and the pair 1-3 and 3—4 (labeled with ‘b’):

time flies like an arrow

0 | 2 3 4 5

v | v Jove | o] N |
| NP ‘ b a’ NP

And we continue the process in this way.

	Heads and Dependency
	CYK Chart Parsing Algorithm
	Efficient Inference in PCFG Model

