
Lecture 21 p.1

Faculty of Computer Science, Dalhousie University 27-Nov-2024
CSCI 4152/6509 — Natural Language Processing

Lecture 21: CYK Algorithm and PCFGs

Location: Carleton Tupper Building Theatre C Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

– Phrase structure in English (continued):
– NP, VP, PP, ADJP, ADVP

– Heads and dependency, dependency tree
– CYK Chart Parsing Algorithm
– Chomsky Normal Form (CNF)
– CYK algorithm example

Implementation

The example implies that we need to use a two-dimensional table to store chart entries. Using a two-dimensional
table is a possible solution, but in that case the table entries would be quite complex since each of them needs to
store a set of non-terminals. To make the solution simpler, we can use a three-dimensional table, such that the third
dimension corresponds to all different non-terminals.

Explanation of Index Use in CYK

.

i i+ji+j−1i+l−1 i+l

[i,j,k]β

[i,l,k1]
[i+l,j−l,k2]β

β

j

l

CYK Algorithm

Let all nonterminals be: N1, . . .Nm.

In the standard CYK algorithm, we have a two dimensional table β in which only the entries βij , 1 ≤ i ≤ i+j−1 ≤
n, are used. Each entry βij contains a set of nonterminals that can produce substring wi . . . wi+j−1 using the
grammar rules, i.e., βij = {N |N ⇒∗ wi . . . wi+j−1}.

November 28, 2024, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 21 p.2 CSCI 4152/6509

If we enumerate all nonterminals: N1, N2, . . . , Nm, then each set of nonterminals βij can be represented by
extending β to be a 3-dimensional table βijk, in which βijk = 1 means thatNk can produce substringwi . . . wi+j−1,
and βijk = 0 that it cannot.

Algorithm 1 CYK Parsing Algorithm
Require: sentence = w1 . . . wn, and a CFG in CNF with nonterminals N1 . . . Nm,

N1 is the start symbol
Ensure: parsed sentence

1: allocate matrix β ∈ {0, 1}n×n×m and initialize all entries to 0
2: for i← 1 to n do
3: for all rules Nk → wi do
4: β[i, 1, k]← 1
5: for j ← 2 to n do
6: for i← 1 to n− j + 1 do
7: for l← 1 to j − 1 do
8: for all rules Nk → Nk1Nk2 do
9: β[i, j, k]← β[i, j, k] OR (β[i, l, k1] AND β[i+ l, j − l, k2])

10: return β[1, n, 1]

The line β[i, j, k]← β[i, j, k] OR (β[i, l, k1] AND β[i+ l, j − l, k2]) in the algorithm is essentially is a shorthand
expression for:

if β[i, l, k1] AND β[i+ l, j − l, k2] then
β[i, j, k]← 1

26 Efficient Inference in PCFG Model

Efficient Inference in PCFG Model

Let us consider the marginalization task:

P(sentence) =?

If ‘sentence’ is the following sequence of words: w1w2 . . . wn, then P(sentence) is the following conditional
probability:

P(sentence) = P(w1w2 . . . wn|S)

i.e., it is the probability of generating the sentence given that we start from S, i.e, it is P(S ⇒∗ w1 . . . wn).

An obvious way to calculate this marginal probability is to find all parse trees of a sentence and sum their probabilities,
i.e:

P(sentence) =
∑
t∈T

P(t),

where T is the set of all parse trees of the sentence ‘sentence’. However, this may be very inefficient. We also need
a way to find all parse trees.

As an example illustrating that the above direct approach may lead to an exponential algorithm, consider a CFG
with only two rules S ⇒ S S and S ⇒ a. The sentences an have as many parse trees as there are binary trees with
n leaves, which is a well-known Catalan number, ≈ 4n

n3/2
√
π

as n→∞.

An algorithm for efficient marginalization can be derived from the CYK algorithm.

CSCI 4152/6509 Lecture 21 p.3

PCFG Marginalization

The CKY algorithms is adapted to solve the problem of efficient PCFG marginalization, but replacing entries of
the table β with numbers between 0 and 1. These numbers are called inside probabilities, and they represent the
following probabilities:

β[i, j, k] = P(wi . . . wi+j−1|Nk)

So, β[i, j, k] is the probability that the string wi . . . wi+j−1 is generated in a derivation where the starting non-
terminal is Nk. Algorithm 2 is the probabilistic CYK algorithm for calculating P(sentence).

Algorithm 2 Probabilistic CYK for P(sentence)
Require: sentence = w1 . . . wn, and a PCFG in CNF with nonterminals N1 . . . Nm, N1 is the start symbol
Ensure: P(sentence) is returned

1: allocate β ∈ Rn×n×m and initialize all entries to 0
2: for i← 1 to n do
3: for all rules Nk → wi do
4: β[i, 1, k]← P(Nk → wi)
5: for j ← 2 to n do
6: for i← 1 to n− j + 1 do
7: for l← 1 to j − 1 do
8: for all rules Nk → Nk1Nk2 do
9: β[i, j, k]← β[i, j, k]+ P(Nk → Nk1Nk2) · β[i, l, k1] · β[i+ l, j − l, k2]

10: return β[1, n, 1]

PCFG Marginalization Example (grammar)

S → NP VP /1 VP → V NP /.5 N → time /.5
NP → time /.4 VP → V PP /.5 N → arrow /.3
NP → N N /.2 PP → P NP /1 N → flies /.2
NP → D N /.4 D → an /1

V → like /.3
V → flies /.7
P → like /1

Lecture 21 p.4 CSCI 4152/6509

PCFG Marginalization Example (chart)

β [1,1,.]

NP: 0.4

N: 0.5

0.5 x 0.2 x 0.2 = 0.02

 N N P(NP−> N N)

time
1

flies

V: 0.7

N: 0.2

2
like

V: 0.3

P: 1

3
an

D: 1

4
arrow

N: 0.3

5 6

β [1,2,.] β [1,3,.] β [1,4,.] β [1,5,.]

NP: 0.02 NP: 0.12β [2,1,.]

PP: 0.12

VP: 0.018

VP: 0.042

S: 0.0168

0.01716

D N P(NP−>D N)

1 x 0.3 x 0.4 = 0.12

P NP P(PP−>P NP)

1 x 0.12 x 1 = 0.12

V NP P(VP−>V NP)

0.3 x 0.12 x 0.5 = 0.018

V PP P(VP−>V PP)

0.7 x 0.12 x 0.5 = 0.042

NP VP P(S−>NP VP)

0.4 x 0.042 x 1 = 0.0168

add

NP VP P(S−>NP VP)

0.02 x 0.018 x 1 = 0.00036

0.0168+0.00036=0.01716

P(time flies like an arrow) =

= 0.01716

Conditioning

The conditioning computational problem in the PCFG model becomes the task of finding the conditional probability
P(tree|sentence), for a particular sentence and a particular parse three of the given sentence. Using the definition of
the conditional probability, we have:

P(tree|sentence) =
P(tree, sentence)
P(sentence)

and since the sentence is a part of the parse tree, we can further write:

P(tree|sentence) =
P(tree, sentence)
P(sentence)

=
P(tree)

P(sentence)

Slide notes:

Conditioning
– Conditioning in the PCFG model: P(tree|sentence)
– Use the formula:

P(tree|sentence) =
P(tree, sentence)
P(sentence)

=
P(tree)

P(sentence)

– P(tree) — directly evaluated
– P(sentence) — marginalization

P(tree) is calculated by multiplying probabilities of all rules in the tree, and P(sentence) is calculated by the
Algorithm 2 used for marginalization.

CSCI 4152/6509 Lecture 21 p.5

Completion

The completion task becomes the parsing problem; i.e., the problem of finding the most probably parse tree give the
sentence, which can be expressed as:

arg max
tree

P(tree|sentence)

Slide notes:

Completion
– Finding the most likely parse tree of a sentence:

arg max
tree

P(tree|sentence)

– Use the CYK algorithm in which line 9 is replaced with:
9: β[i, j, k]← max(β[i, j, k],P(Nk →
Nk1Nk2) · β[i, l, k1] · β[i+ l, j − l, k2])

– Return the most likely tree

The most probable completion is computed in a similar way to the marginalization algorithm (Algorithm 2). The
difference is that the line 9 is replaced by the line

9: β[i, j, k]← max(β[i, j, k],P(Nk → Nk1Nk2) · β[i, l, k1] · β[i+ l, j − l, k2])

Additionally in step 10, we are not just interested in β[1, n, 1], which is the probability of the most probable tree,
but we also want to obtain the actual tree.

Algorithm 3 CYK-based Completion Algorithm for arg maxt P(t|sentence)

Require: sentence = w1 . . . wn, and a PCFG in CNF with nonterminals N1 . . . Nm, N1 is the start symbol
Ensure: The most likely parse tree is returned

1: allocate β ∈ Rn×n×m and initialize all entries to 0
2: for i← 1 to n do
3: for all rules Nk → wi do
4: β[i, 1, k]← P(Nk → wi)
5: for j ← 2 to n do
6: for i← 1 to n− j + 1 do
7: for l← 1 to j − 1 do
8: for all rules Nk → Nk1Nk2 do
9: β[i, j, k]← max(β[i, j, k],P(Nk → Nk1Nk2) · β[i, l, k1] · β[i+ l, j − l, k2])

10: return Reconstruct(1, n, 1, β)

The tree can be reconstructed from the table using algorithm 4:
10: return Reconstruct(1, n, 1, β)

PCFG Completion Example (grammar)

S → NP VP /1 VP → V NP /.5 N → time /.5
NP → time /.4 VP → V PP /.5 N → arrow /.3
NP → N N /.2 PP → P NP /1 N → flies /.2
NP → D N /.4 D → an /1

V → like /.3
V → flies /.7
P → like /1

Lecture 21 p.6 CSCI 4152/6509

Algorithm 4 Reconstruct(i, j, k, β)
Require: β — table from CYK, i — index of the first word, j — length of sub-string sentence, k — index of

non-terminal
Ensure: a most probable tree with root Nk and leaves wi . . . wi+j−1 is returned

1: if j = 1 then
2: return tree with root Nk and child wi
3: for l← 1 to j − 1 do
4: for all rules Nk → Nk1Nk2 do
5: if β[i, j, k] = P(Nk → Nk1Nk2) · β[i, l, k1] · β[i+ l, j − l, k2] then
6: create a tree t with root Nk

7: t.left child← Reconstruct(i, l, k1, β)
8: t.right child← Reconstruct(i+ l, j − l, k2, β)
9: return t

PCFG Completion Example (chart)

β [1,1,.]

NP: 0.4

N: 0.5

0.5 x 0.2 x 0.2 = 0.02

 N N P(NP−> N N)

time
1

flies

V: 0.7

N: 0.2

2
like

V: 0.3

P: 1

3
an

D: 1

4
arrow

N: 0.3

5 6

β [1,2,.] β [1,3,.] β [1,4,.] β [1,5,.]

NP: 0.02 NP: 0.12β [2,1,.]

PP: 0.12

VP: 0.018

VP: 0.042

S: 0.0168

D N P(NP−>D N)

1 x 0.3 x 0.4 = 0.12

P NP P(PP−>P NP)

1 x 0.12 x 1 = 0.12

V NP P(VP−>V NP)

0.3 x 0.12 x 0.5 = 0.018

V PP P(VP−>V PP)

0.7 x 0.12 x 0.5 = 0.042

NP VP P(S−>NP VP)

0.4 x 0.042 x 1 = 0.0168

choose max:

NP VP P(S−>NP VP)

0.02 x 0.018 x 1 = 0.00036

max(0.0168,0.00036)=0.0168
= 0.0168

max P(tree | time flies like an arrow) =

CSCI 4152/6509 Lecture 21 p.7

PCFG Completion Example (tree reconstruction)

β [1,1,.]

time
1

flies

V: 0.7

2
like

P: 1

3
an

D: 1

4
arrow

N: 0.3

5 6

β [1,2,.] β [1,3,.] β [1,4,.] β [1,5,.]

NP: 0.12β [2,1,.]

PP: 0.12

VP: 0.042

S: 0.0168

D N P(NP−>D N)

1 x 0.3 x 0.4 = 0.12

P NP P(PP−>P NP)

1 x 0.12 x 1 = 0.12

V PP P(VP−>V PP)

0.7 x 0.12 x 0.5 = 0.042

NP VP P(S−>NP VP)

0.4 x 0.042 x 1 = 0.0168

choose max:

NP VP P(S−>NP VP)

0.02 x 0.018 x 1 = 0.00036

max(0.0168,0.00036)=0.0168

start here

NP: 0.4

PCFG Completion Example (final tree)

The most probable three:

S

NP VP

time

flies

V

D

arrowan

N

NP

like

P

PP

Topics related to PCFGs

– An interesting open problem is whether the inference in PCFGs can be reduced to a message-passing-style
algorithm as used in Bayesian Networks?

Issues with PCFGs

The Probabilistic Context-Free Grammars were shown to perform quite well in parsing English, but usually with
some additional mechanisms to address certain issues. Two most prominent issues in using PCFGs to parse nature
languages are the inability of PCFGs to capture structural and lexical dependencies.

Lecture 21 p.8 CSCI 4152/6509

Structural dependencies are rule dependencies on the position in a parse tree. For example, pronouns occur
more frequently as subjects than objects in sentences, so the rule choice between NP→ PRP and NP→ DT NN
should depend on the position of a noun phrase in a tree. Generally, NL parse trees are usually deeper at their right
side than the left side, and this propertly is typically not modeled well with PCFGs.

Lexical dependencies are rule dependencies on the words that are eventually derived from those rules, particularly
phrase head words. As an example, the PP-attachment problem is resolved based on the rule probabilities of the
rules applied higher in the parse tree, such as NP → NP PP and VP → VB NP PP, while they truly frequently
depend on the verb being used and other word, particularly head words.

Slide notes:

PP-Attachment Example
– Consider sentences:

– “Workers dumped sacks into a bin.” and
– “Workers dumped sacks of fish.”

– and rules:
– NP→ NP PP
– VP→ VBD NP
– VP→ VBD NP PP

As an example, let us consider simple sentences:

– “Workers dumped sacks into a bin.” (from [JM]), and
– “Workers dumped sacks of fish.”

At some level of parsing, we can see both of these sentences as:

– NP VBD NP PP

and now the question is whether the “NP PP” should be combined to make an NP, or the sequence “VBD NP PP”
should be combined to make a VP. In a PCFG this will depend only on the probability of the rules: NP→ NP PP,
VP → VBD NP, and VP → VBD NP PP. However, we can see that the probailities should actually depend on
affinity of the verb ‘dump’ and preposition ‘into’ on one side, and the noun ‘sacks’ and the preposition ‘of’ on other
side.

A Solution: Probabilistic Lexicalized CFGs

– use heads of phrases
– expanded set of rules, e.g.:

VP(dumped)→ VBD(dumped) NP(sacks) PP(into)

– large number of new rules
– sparse data problem
– solution: new independence assumptions
– proposed solutions by Charniak, Collins, etc. around 1999

	Efficient Inference in PCFG Model
	Non-context-free Natural Language Phenomena
	Are Natural Languages Context-Free?
	Natural Language Phenomena
	Phenomenon 1: Agreement
	Phenomenon 2: Movement
	Phenomenon 3: Subcategorization

	Parser Evaluation

